[exampels] add speechcommand train (#30)
* [example] added code for training speech command dataset * update kes_model.py * update kes_model.py * format * format * add more comments to explain the new classifier designed for speech command classification task * add copyrigh info * update copyrigh info of classifier.py
This commit is contained in:
parent
8be4bef405
commit
37f56db5af
52
examples/speechcommand_v1/s0/conf/mdtc.yaml
Normal file
52
examples/speechcommand_v1/s0/conf/mdtc.yaml
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
dataset_conf:
|
||||||
|
filter_conf:
|
||||||
|
max_length: 2048
|
||||||
|
min_length: 0
|
||||||
|
resample_conf:
|
||||||
|
resample_rate: 16000
|
||||||
|
speed_perturb: false
|
||||||
|
feature_extraction_conf:
|
||||||
|
feature_type: 'mfcc'
|
||||||
|
num_ceps: 80
|
||||||
|
num_mel_bins: 80
|
||||||
|
frame_shift: 10
|
||||||
|
frame_length: 25
|
||||||
|
dither: 1.0
|
||||||
|
feature_dither: 0.0
|
||||||
|
spec_aug: true
|
||||||
|
spec_aug_conf:
|
||||||
|
num_t_mask: 2
|
||||||
|
num_f_mask: 2
|
||||||
|
max_t: 20
|
||||||
|
max_f: 40
|
||||||
|
shuffle: true
|
||||||
|
shuffle_conf:
|
||||||
|
shuffle_size: 1500
|
||||||
|
batch_conf:
|
||||||
|
batch_size: 100
|
||||||
|
|
||||||
|
model:
|
||||||
|
hidden_dim: 64
|
||||||
|
preprocessing:
|
||||||
|
type: none
|
||||||
|
backbone:
|
||||||
|
type: mdtc
|
||||||
|
num_stack: 4
|
||||||
|
stack_size: 4
|
||||||
|
kernel_size: 5
|
||||||
|
hidden_dim: 64
|
||||||
|
causal: False
|
||||||
|
classifier:
|
||||||
|
type: global
|
||||||
|
dropout: 0.5
|
||||||
|
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.001
|
||||||
|
weight_decay: 0.00005
|
||||||
|
|
||||||
|
training_config:
|
||||||
|
grad_clip: 50
|
||||||
|
max_epoch: 100
|
||||||
|
log_interval: 10
|
||||||
|
criterion: ce
|
||||||
@ -7,7 +7,19 @@
|
|||||||
export CUDA_VISIBLE_DEVICES="0"
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
|
||||||
stage=-1
|
stage=-1
|
||||||
stop_stage=0
|
stop_stage=2
|
||||||
|
num_keywords=11
|
||||||
|
|
||||||
|
config=conf/mdtc.yaml
|
||||||
|
norm_mean=false
|
||||||
|
norm_var=false
|
||||||
|
gpu_id=4
|
||||||
|
|
||||||
|
checkpoint=
|
||||||
|
dir=exp/mdtc
|
||||||
|
|
||||||
|
num_average=10
|
||||||
|
score_checkpoint=$dir/avg_${num_average}.pt
|
||||||
|
|
||||||
# your data dir
|
# your data dir
|
||||||
download_dir=/mnt/mnt-data-3/jingyong.hou/data
|
download_dir=/mnt/mnt-data-3/jingyong.hou/data
|
||||||
@ -35,3 +47,35 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||||
|
echo "Compute CMVN and Format datasets"
|
||||||
|
tools/compute_cmvn_stats.py --num_workers 16 --train_config $config \
|
||||||
|
--in_scp data/train/wav.scp \
|
||||||
|
--out_cmvn data/train/global_cmvn
|
||||||
|
|
||||||
|
for x in train valid test; do
|
||||||
|
tools/wav_to_duration.sh --nj 8 data/$x/wav.scp data/$x/wav.dur
|
||||||
|
tools/make_list.py data/$x/wav.scp data/$x/text \
|
||||||
|
data/$x/wav.dur data/$x/data.list
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||||
|
echo "Start training ..."
|
||||||
|
mkdir -p $dir
|
||||||
|
cmvn_opts=
|
||||||
|
$norm_mean && cmvn_opts="--cmvn_file data/train/global_cmvn"
|
||||||
|
$norm_var && cmvn_opts="$cmvn_opts --norm_var"
|
||||||
|
python kws/bin/train.py --gpu $gpu_id \
|
||||||
|
--config $config \
|
||||||
|
--train_data data/train/data.list \
|
||||||
|
--cv_data data/valid/data.list \
|
||||||
|
--model_dir $dir \
|
||||||
|
--num_workers 8 \
|
||||||
|
--num_keywords $num_keywords \
|
||||||
|
--min_duration 50 \
|
||||||
|
$cmvn_opts \
|
||||||
|
${checkpoint:+--checkpoint $checkpoint}
|
||||||
|
fi
|
||||||
|
|||||||
@ -221,8 +221,9 @@ def main():
|
|||||||
logging.info('Epoch {} TRAIN info lr {}'.format(epoch, lr))
|
logging.info('Epoch {} TRAIN info lr {}'.format(epoch, lr))
|
||||||
executor.train(model, optimizer, train_data_loader, device, writer,
|
executor.train(model, optimizer, train_data_loader, device, writer,
|
||||||
training_config)
|
training_config)
|
||||||
cv_loss = executor.cv(model, cv_data_loader, device, training_config)
|
cv_loss, cv_acc = executor.cv(model, cv_data_loader, device, training_config)
|
||||||
logging.info('Epoch {} CV info cv_loss {}'.format(epoch, cv_loss))
|
logging.info('Epoch {} CV info cv_loss {} cv_acc {}'
|
||||||
|
.format(epoch, cv_loss, cv_acc))
|
||||||
|
|
||||||
if args.rank == 0:
|
if args.rank == 0:
|
||||||
save_model_path = os.path.join(model_dir, '{}.pt'.format(epoch))
|
save_model_path = os.path.join(model_dir, '{}.pt'.format(epoch))
|
||||||
@ -232,6 +233,7 @@ def main():
|
|||||||
'cv_loss': cv_loss,
|
'cv_loss': cv_loss,
|
||||||
})
|
})
|
||||||
writer.add_scalar('epoch/cv_loss', cv_loss, epoch)
|
writer.add_scalar('epoch/cv_loss', cv_loss, epoch)
|
||||||
|
writer.add_scalar('epoch/cv_acc', cv_acc, epoch)
|
||||||
writer.add_scalar('epoch/lr', lr, epoch)
|
writer.add_scalar('epoch/lr', lr, epoch)
|
||||||
final_epoch = epoch
|
final_epoch = epoch
|
||||||
scheduler.step(cv_loss)
|
scheduler.step(cv_loss)
|
||||||
|
|||||||
47
kws/model/classifier.py
Normal file
47
kws/model/classifier.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
# Copyright (c) 2021 Jingyong Hou
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class GlobalClassifier(nn.Module):
|
||||||
|
"""Add a global average pooling before the classifier"""
|
||||||
|
def __init__(self, classifier: nn.Module):
|
||||||
|
super(GlobalClassifier, self).__init__()
|
||||||
|
self.classifier = classifier
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
x = torch.mean(x, dim=1)
|
||||||
|
return self.classifier(x)
|
||||||
|
|
||||||
|
|
||||||
|
class LastClassifier(nn.Module):
|
||||||
|
"""Select last frame to do the classification"""
|
||||||
|
def __init__(self, classifier: nn.Module):
|
||||||
|
super(LastClassifier, self).__init__()
|
||||||
|
self.classifier = classifier
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
x = x[:, -1, :]
|
||||||
|
return self.classifier(x)
|
||||||
|
|
||||||
|
class ElementClassifier(nn.Module):
|
||||||
|
"""Classify all the frames in an utterance"""
|
||||||
|
def __init__(self, classifier: nn.Module):
|
||||||
|
super(ElementClassifier, self).__init__()
|
||||||
|
self.classifier = classifier
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
return self.classifier(x)
|
||||||
@ -16,8 +16,10 @@ import sys
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
from kws.model.cmvn import GlobalCMVN
|
from kws.model.cmvn import GlobalCMVN
|
||||||
|
from kws.model.classifier import GlobalClassifier, LastClassifier
|
||||||
from kws.model.subsampling import LinearSubsampling1, Conv1dSubsampling1, NoSubsampling
|
from kws.model.subsampling import LinearSubsampling1, Conv1dSubsampling1, NoSubsampling
|
||||||
from kws.model.tcn import TCN, CnnBlock, DsCnnBlock
|
from kws.model.tcn import TCN, CnnBlock, DsCnnBlock
|
||||||
from kws.model.mdtc import MDTC
|
from kws.model.mdtc import MDTC
|
||||||
@ -39,6 +41,7 @@ class KWSModel(torch.nn.Module):
|
|||||||
global_cmvn: Optional[torch.nn.Module],
|
global_cmvn: Optional[torch.nn.Module],
|
||||||
preprocessing: Optional[torch.nn.Module],
|
preprocessing: Optional[torch.nn.Module],
|
||||||
backbone: torch.nn.Module,
|
backbone: torch.nn.Module,
|
||||||
|
classifier: torch.nn.Module
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.idim = idim
|
self.idim = idim
|
||||||
@ -47,7 +50,7 @@ class KWSModel(torch.nn.Module):
|
|||||||
self.global_cmvn = global_cmvn
|
self.global_cmvn = global_cmvn
|
||||||
self.preprocessing = preprocessing
|
self.preprocessing = preprocessing
|
||||||
self.backbone = backbone
|
self.backbone = backbone
|
||||||
self.classifier = torch.nn.Linear(hdim, odim)
|
self.classifier = classifier
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
if self.global_cmvn is not None:
|
if self.global_cmvn is not None:
|
||||||
@ -55,7 +58,6 @@ class KWSModel(torch.nn.Module):
|
|||||||
x = self.preprocessing(x)
|
x = self.preprocessing(x)
|
||||||
x, _ = self.backbone(x)
|
x, _ = self.backbone(x)
|
||||||
x = self.classifier(x)
|
x = self.classifier(x)
|
||||||
x = torch.sigmoid(x)
|
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@ -110,17 +112,39 @@ def init_model(configs):
|
|||||||
num_stack = configs['backbone']['num_stack']
|
num_stack = configs['backbone']['num_stack']
|
||||||
kernel_size = configs['backbone']['kernel_size']
|
kernel_size = configs['backbone']['kernel_size']
|
||||||
hidden_dim = configs['backbone']['hidden_dim']
|
hidden_dim = configs['backbone']['hidden_dim']
|
||||||
|
causal = configs['backbone']['causal']
|
||||||
backbone = MDTC(num_stack,
|
backbone = MDTC(num_stack,
|
||||||
stack_size,
|
stack_size,
|
||||||
input_dim,
|
input_dim,
|
||||||
hidden_dim,
|
hidden_dim,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
causal=True)
|
causal=causal)
|
||||||
else:
|
else:
|
||||||
print('Unknown body type {}'.format(backbone_type))
|
print('Unknown body type {}'.format(backbone_type))
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
if 'classifier' in configs:
|
||||||
|
# For speech command dataset, we use 2 FC layer as classifier,
|
||||||
|
# we add dropout after first FC layer to prevent overfitting
|
||||||
|
classifier_type = configs['classifier']['type']
|
||||||
|
dropout = configs['classifier']['dropout']
|
||||||
|
|
||||||
|
classifier_base = nn.Sequential(nn.Linear(hidden_dim, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(64, output_dim))
|
||||||
|
if classifier_type == 'global':
|
||||||
|
# global means we add a global average pooling before classifier
|
||||||
|
classifier = GlobalClassifier(classifier_base)
|
||||||
|
elif classifier_type == 'last':
|
||||||
|
# last means we use last frame to do backpropagation, so the model
|
||||||
|
# can be infered streamingly
|
||||||
|
classifier = LastClassifier(classifier_base)
|
||||||
|
else:
|
||||||
|
print('Unknown classifier type {}'.format(classifier_type))
|
||||||
|
sys.exit(1)
|
||||||
|
else:
|
||||||
|
classifier = torch.nn.Linear(hidden_dim, output_dim)
|
||||||
|
|
||||||
kws_model = KWSModel(input_dim, output_dim, hidden_dim, global_cmvn,
|
kws_model = KWSModel(input_dim, output_dim, hidden_dim, global_cmvn,
|
||||||
preprocessing, backbone)
|
preprocessing, backbone, classifier)
|
||||||
return kws_model
|
return kws_model
|
||||||
|
|||||||
@ -13,11 +13,12 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
from kws.utils.mask import padding_mask
|
from kws.utils.mask import padding_mask
|
||||||
|
|
||||||
|
|
||||||
def max_polling_loss(logits: torch.Tensor,
|
def max_pooling_loss(logits: torch.Tensor,
|
||||||
target: torch.Tensor,
|
target: torch.Tensor,
|
||||||
lengths: torch.Tensor,
|
lengths: torch.Tensor,
|
||||||
min_duration: int = 0):
|
min_duration: int = 0):
|
||||||
@ -37,6 +38,7 @@ def max_polling_loss(logits: torch.Tensor,
|
|||||||
(float): loss of current batch
|
(float): loss of current batch
|
||||||
(float): accuracy of current batch
|
(float): accuracy of current batch
|
||||||
'''
|
'''
|
||||||
|
logits = torch.sigmoid(logits)
|
||||||
mask = padding_mask(lengths)
|
mask = padding_mask(lengths)
|
||||||
num_utts = logits.size(0)
|
num_utts = logits.size(0)
|
||||||
num_keywords = logits.size(2)
|
num_keywords = logits.size(2)
|
||||||
@ -80,3 +82,46 @@ def max_polling_loss(logits: torch.Tensor,
|
|||||||
acc = num_correct / num_utts
|
acc = num_correct / num_utts
|
||||||
# acc = 0.0
|
# acc = 0.0
|
||||||
return loss, acc
|
return loss, acc
|
||||||
|
|
||||||
|
|
||||||
|
def acc_frame(
|
||||||
|
logits: torch.Tensor,
|
||||||
|
target: torch.Tensor,
|
||||||
|
):
|
||||||
|
if logits is None:
|
||||||
|
return 0
|
||||||
|
pred = logits.max(1, keepdim=True)[1]
|
||||||
|
correct = pred.eq(target.long().view_as(pred)).sum().item()
|
||||||
|
return correct * 100.0 / logits.size(0)
|
||||||
|
|
||||||
|
|
||||||
|
def cross_entropy(logits: torch.Tensor, target: torch.Tensor):
|
||||||
|
""" Cross Entropy Loss
|
||||||
|
Attributes:
|
||||||
|
logits: (B, D), D is the number of keywords plus 1 (non-keyword)
|
||||||
|
target: (B)
|
||||||
|
lengths: (B)
|
||||||
|
min_duration: min duration of the keyword
|
||||||
|
Returns:
|
||||||
|
(float): loss of current batch
|
||||||
|
(float): accuracy of current batch
|
||||||
|
"""
|
||||||
|
cross_entropy = nn.CrossEntropyLoss()
|
||||||
|
loss = cross_entropy(logits, target)
|
||||||
|
acc = acc_frame(logits, target)
|
||||||
|
return loss, acc
|
||||||
|
|
||||||
|
|
||||||
|
def criterion(type: str,
|
||||||
|
logits: torch.Tensor,
|
||||||
|
target: torch.Tensor,
|
||||||
|
lengths: torch.Tensor,
|
||||||
|
min_duration: int = 0):
|
||||||
|
if type == 'ce':
|
||||||
|
loss, acc = cross_entropy(logits, target)
|
||||||
|
return loss, acc
|
||||||
|
elif type == 'max_pooling':
|
||||||
|
loss, acc = max_pooling_loss(logits, target, lengths, min_duration)
|
||||||
|
return loss, acc
|
||||||
|
else:
|
||||||
|
exit(1)
|
||||||
|
|||||||
@ -17,7 +17,7 @@ import logging
|
|||||||
import torch
|
import torch
|
||||||
from torch.nn.utils import clip_grad_norm_
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
|
||||||
from kws.model.loss import max_polling_loss
|
from kws.model.loss import criterion
|
||||||
|
|
||||||
|
|
||||||
class Executor:
|
class Executor:
|
||||||
@ -44,8 +44,8 @@ class Executor:
|
|||||||
if num_utts == 0:
|
if num_utts == 0:
|
||||||
continue
|
continue
|
||||||
logits = model(feats)
|
logits = model(feats)
|
||||||
loss, acc = max_polling_loss(logits, target, feats_lengths,
|
loss_type = args.get('criterion', 'max_pooling')
|
||||||
min_duration)
|
loss, acc = criterion(loss_type, logits, target, feats_lengths)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
grad_norm = clip_grad_norm_(model.parameters(), clip)
|
grad_norm = clip_grad_norm_(model.parameters(), clip)
|
||||||
if torch.isfinite(grad_norm):
|
if torch.isfinite(grad_norm):
|
||||||
@ -64,6 +64,7 @@ class Executor:
|
|||||||
# in order to avoid division by 0
|
# in order to avoid division by 0
|
||||||
num_seen_utts = 1
|
num_seen_utts = 1
|
||||||
total_loss = 0.0
|
total_loss = 0.0
|
||||||
|
total_acc = 0.0
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for batch_idx, batch in enumerate(data_loader):
|
for batch_idx, batch in enumerate(data_loader):
|
||||||
key, feats, target, feats_lengths = batch
|
key, feats, target, feats_lengths = batch
|
||||||
@ -73,15 +74,19 @@ class Executor:
|
|||||||
num_utts = feats_lengths.size(0)
|
num_utts = feats_lengths.size(0)
|
||||||
if num_utts == 0:
|
if num_utts == 0:
|
||||||
continue
|
continue
|
||||||
num_seen_utts += num_utts
|
|
||||||
logits = model(feats)
|
logits = model(feats)
|
||||||
loss, acc = max_polling_loss(logits, target, feats_lengths)
|
loss, acc = criterion(args.get('criterion', 'max_pooling'),
|
||||||
|
logits, target, feats_lengths)
|
||||||
if torch.isfinite(loss):
|
if torch.isfinite(loss):
|
||||||
num_seen_utts += num_utts
|
num_seen_utts += num_utts
|
||||||
total_loss += loss.item() * num_utts
|
total_loss += loss.item() * num_utts
|
||||||
|
total_acc += acc * num_utts
|
||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
logging.debug(
|
logging.debug(
|
||||||
'CV Batch {}/{} loss {:.8f} acc {:.8f} history loss {:.8f}'
|
'CV Batch {}/{} loss {:.8f} acc {:.8f} history loss {:.8f}'
|
||||||
.format(epoch, batch_idx, loss.item(), acc,
|
.format(epoch, batch_idx, loss.item(), acc,
|
||||||
total_loss / num_seen_utts))
|
total_loss / num_seen_utts))
|
||||||
return total_loss / num_seen_utts
|
return total_loss / num_seen_utts, total_acc / num_seen_utts
|
||||||
|
|
||||||
|
def test(self, model, data_loader, device, args):
|
||||||
|
return self.cv(model, data_loader, device, args)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user