[wekws] add cache support for mdtc (#105)
* [wekws] add cache support for mdtc * format Co-authored-by: 02Bigboy <570843154@qq.com>
This commit is contained in:
parent
80285fa696
commit
64ccd5bb86
@ -28,7 +28,7 @@ dataset_conf:
|
|||||||
model:
|
model:
|
||||||
hidden_dim: 32
|
hidden_dim: 32
|
||||||
preprocessing:
|
preprocessing:
|
||||||
type: none
|
type: linear
|
||||||
backbone:
|
backbone:
|
||||||
type: mdtc
|
type: mdtc
|
||||||
num_stack: 3
|
num_stack: 3
|
||||||
|
|||||||
@ -28,13 +28,14 @@ dataset_conf:
|
|||||||
model:
|
model:
|
||||||
hidden_dim: 64
|
hidden_dim: 64
|
||||||
preprocessing:
|
preprocessing:
|
||||||
type: none
|
type: linear
|
||||||
backbone:
|
backbone:
|
||||||
type: mdtc
|
type: mdtc
|
||||||
num_stack: 4
|
num_stack: 4
|
||||||
stack_size: 4
|
stack_size: 4
|
||||||
kernel_size: 5
|
kernel_size: 5
|
||||||
hidden_dim: 64
|
hidden_dim: 64
|
||||||
|
causal: True
|
||||||
|
|
||||||
optim: adam
|
optim: adam
|
||||||
optim_conf:
|
optim_conf:
|
||||||
|
|||||||
@ -28,13 +28,14 @@ dataset_conf:
|
|||||||
model:
|
model:
|
||||||
hidden_dim: 32
|
hidden_dim: 32
|
||||||
preprocessing:
|
preprocessing:
|
||||||
type: none
|
type: linear
|
||||||
backbone:
|
backbone:
|
||||||
type: mdtc
|
type: mdtc
|
||||||
num_stack: 3
|
num_stack: 3
|
||||||
stack_size: 4
|
stack_size: 4
|
||||||
kernel_size: 5
|
kernel_size: 5
|
||||||
hidden_dim: 32
|
hidden_dim: 32
|
||||||
|
causal: True
|
||||||
|
|
||||||
optim: adam
|
optim: adam
|
||||||
optim_conf:
|
optim_conf:
|
||||||
|
|||||||
@ -28,14 +28,14 @@ dataset_conf:
|
|||||||
model:
|
model:
|
||||||
hidden_dim: 64
|
hidden_dim: 64
|
||||||
preprocessing:
|
preprocessing:
|
||||||
type: none
|
type: linear
|
||||||
backbone:
|
backbone:
|
||||||
type: mdtc
|
type: mdtc
|
||||||
num_stack: 4
|
num_stack: 4
|
||||||
stack_size: 4
|
stack_size: 4
|
||||||
kernel_size: 5
|
kernel_size: 5
|
||||||
hidden_dim: 64
|
hidden_dim: 64
|
||||||
causal: False
|
causal: True
|
||||||
classifier:
|
classifier:
|
||||||
type: global
|
type: global
|
||||||
dropout: 0.5
|
dropout: 0.5
|
||||||
|
|||||||
@ -131,7 +131,7 @@ def init_model(configs):
|
|||||||
causal = configs['backbone']['causal']
|
causal = configs['backbone']['causal']
|
||||||
backbone = MDTC(num_stack,
|
backbone = MDTC(num_stack,
|
||||||
stack_size,
|
stack_size,
|
||||||
input_dim,
|
hidden_dim,
|
||||||
hidden_dim,
|
hidden_dim,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
causal=causal)
|
causal=causal)
|
||||||
|
|||||||
@ -32,7 +32,7 @@ class DSDilatedConv1d(nn.Module):
|
|||||||
bias: bool = True,
|
bias: bool = True,
|
||||||
):
|
):
|
||||||
super(DSDilatedConv1d, self).__init__()
|
super(DSDilatedConv1d, self).__init__()
|
||||||
self.receptive_fields = dilation * (kernel_size - 1)
|
self.padding = dilation * (kernel_size - 1)
|
||||||
self.conv = nn.Conv1d(
|
self.conv = nn.Conv1d(
|
||||||
in_channels,
|
in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
@ -73,8 +73,8 @@ class TCNBlock(nn.Module):
|
|||||||
self.kernel_size = kernel_size
|
self.kernel_size = kernel_size
|
||||||
self.dilation = dilation
|
self.dilation = dilation
|
||||||
self.causal = causal
|
self.causal = causal
|
||||||
self.receptive_fields = dilation * (kernel_size - 1)
|
self.padding = dilation * (kernel_size - 1)
|
||||||
self.half_receptive_fields = self.receptive_fields // 2
|
self.half_padding = self.padding // 2
|
||||||
self.conv1 = DSDilatedConv1d(
|
self.conv1 = DSDilatedConv1d(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=res_channels,
|
out_channels=res_channels,
|
||||||
@ -90,19 +90,33 @@ class TCNBlock(nn.Module):
|
|||||||
self.bn2 = nn.BatchNorm1d(res_channels)
|
self.bn2 = nn.BatchNorm1d(res_channels)
|
||||||
self.relu2 = nn.ReLU()
|
self.relu2 = nn.ReLU()
|
||||||
|
|
||||||
def forward(self, inputs: torch.Tensor):
|
def forward(
|
||||||
outputs = self.relu1(self.bn1(self.conv1(inputs)))
|
self,
|
||||||
outputs = self.bn2(self.conv2(outputs))
|
inputs: torch.Tensor,
|
||||||
if self.causal:
|
cache: torch.Tensor = torch.zeros(0, 0, 0, dtype=torch.float)
|
||||||
inputs = inputs[:, :, self.receptive_fields:]
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
inputs(torch.Tensor): Input tensor (B, D, T)
|
||||||
|
cache(torch.Tensor): Input cache(B, D, self.padding)
|
||||||
|
Returns:
|
||||||
|
torch.Tensor(B, D, T): outputs
|
||||||
|
torch.Tensor(B, D, self.padding): new cache
|
||||||
|
"""
|
||||||
|
if cache.size(0) == 0:
|
||||||
|
outputs = F.pad(inputs, (self.padding, 0), value=0.0)
|
||||||
else:
|
else:
|
||||||
inputs = inputs[:, :, self.
|
outputs = torch.cat((cache, inputs), dim=2)
|
||||||
half_receptive_fields:-self.half_receptive_fields]
|
assert outputs.size(2) > self.padding
|
||||||
|
new_cache = outputs[:, :, -self.padding:]
|
||||||
|
|
||||||
|
outputs = self.relu1(self.bn1(self.conv1(outputs)))
|
||||||
|
outputs = self.bn2(self.conv2(outputs))
|
||||||
if self.in_channels == self.res_channels:
|
if self.in_channels == self.res_channels:
|
||||||
res_out = self.relu2(outputs + inputs)
|
res_out = self.relu2(outputs + inputs)
|
||||||
else:
|
else:
|
||||||
res_out = self.relu2(outputs)
|
res_out = self.relu2(outputs)
|
||||||
return res_out
|
return res_out, new_cache
|
||||||
|
|
||||||
|
|
||||||
class TCNStack(nn.Module):
|
class TCNStack(nn.Module):
|
||||||
@ -123,14 +137,13 @@ class TCNStack(nn.Module):
|
|||||||
self.kernel_size = kernel_size
|
self.kernel_size = kernel_size
|
||||||
self.causal = causal
|
self.causal = causal
|
||||||
self.res_blocks = self.stack_tcn_blocks()
|
self.res_blocks = self.stack_tcn_blocks()
|
||||||
self.receptive_fields = self.calculate_receptive_fields()
|
self.padding = self.calculate_padding()
|
||||||
self.res_blocks = nn.Sequential(*self.res_blocks)
|
|
||||||
|
|
||||||
def calculate_receptive_fields(self):
|
def calculate_padding(self):
|
||||||
receptive_fields = 0
|
padding = 0
|
||||||
for block in self.res_blocks:
|
for block in self.res_blocks:
|
||||||
receptive_fields += block.receptive_fields
|
padding += block.padding
|
||||||
return receptive_fields
|
return padding
|
||||||
|
|
||||||
def build_dilations(self):
|
def build_dilations(self):
|
||||||
dilations = []
|
dilations = []
|
||||||
@ -162,10 +175,24 @@ class TCNStack(nn.Module):
|
|||||||
))
|
))
|
||||||
return res_blocks
|
return res_blocks
|
||||||
|
|
||||||
def forward(self, inputs: torch.Tensor):
|
def forward(
|
||||||
outputs = inputs
|
self,
|
||||||
outputs = self.res_blocks(outputs)
|
inputs: torch.Tensor,
|
||||||
return outputs
|
in_cache: torch.Tensor = torch.zeros(0, 0, 0, dtype=torch.float)
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
outputs = inputs # (B, D, T)
|
||||||
|
out_caches = []
|
||||||
|
offset = 0
|
||||||
|
for block in self.res_blocks:
|
||||||
|
if in_cache.size(0) > 0:
|
||||||
|
c_in = in_cache[:, :, offset:offset + block.padding]
|
||||||
|
else:
|
||||||
|
c_in = torch.zeros(0, 0, 0)
|
||||||
|
outputs, c_out = block(outputs, c_in)
|
||||||
|
out_caches.append(c_out)
|
||||||
|
offset += block.padding
|
||||||
|
new_cache = torch.cat(out_caches, dim=2)
|
||||||
|
return outputs, new_cache
|
||||||
|
|
||||||
|
|
||||||
class MDTC(nn.Module):
|
class MDTC(nn.Module):
|
||||||
@ -190,6 +217,7 @@ class MDTC(nn.Module):
|
|||||||
super(MDTC, self).__init__()
|
super(MDTC, self).__init__()
|
||||||
assert kernel_size % 2 == 1
|
assert kernel_size % 2 == 1
|
||||||
self.kernel_size = kernel_size
|
self.kernel_size = kernel_size
|
||||||
|
assert causal is True, "we now only support causal mdtc"
|
||||||
self.causal = causal
|
self.causal = causal
|
||||||
self.preprocessor = TCNBlock(in_channels,
|
self.preprocessor = TCNBlock(in_channels,
|
||||||
res_channels,
|
res_channels,
|
||||||
@ -198,66 +226,65 @@ class MDTC(nn.Module):
|
|||||||
causal=causal)
|
causal=causal)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.blocks = nn.ModuleList()
|
self.blocks = nn.ModuleList()
|
||||||
self.receptive_fields = self.preprocessor.receptive_fields
|
self.padding = self.preprocessor.padding
|
||||||
for i in range(stack_num):
|
for i in range(stack_num):
|
||||||
self.blocks.append(
|
self.blocks.append(
|
||||||
TCNStack(res_channels, stack_size, 1, res_channels,
|
TCNStack(res_channels, stack_size, 1, res_channels,
|
||||||
kernel_size, causal))
|
kernel_size, causal))
|
||||||
self.receptive_fields += self.blocks[-1].receptive_fields
|
self.padding += self.blocks[-1].padding
|
||||||
self.half_receptive_fields = self.receptive_fields // 2
|
self.half_padding = self.padding // 2
|
||||||
print('Receptive Fields: %d' % self.receptive_fields)
|
print('Receptive Fields: %d' % self.padding)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
in_cache: torch.Tensor = torch.zeros(0, 0, 0, dtype=torch.float)
|
in_cache: torch.Tensor = torch.zeros(0, 0, 0, dtype=torch.float)
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
if self.causal:
|
outputs = x.transpose(1, 2) # (B, D, T)
|
||||||
outputs = F.pad(x, (0, 0, self.receptive_fields, 0, 0, 0),
|
|
||||||
'constant')
|
|
||||||
else:
|
|
||||||
outputs = F.pad(
|
|
||||||
x,
|
|
||||||
(0, 0, self.half_receptive_fields, self.half_receptive_fields,
|
|
||||||
0, 0),
|
|
||||||
'constant',
|
|
||||||
)
|
|
||||||
outputs = outputs.transpose(1, 2)
|
|
||||||
outputs_list = []
|
outputs_list = []
|
||||||
outputs = self.relu(self.preprocessor(outputs))
|
out_caches = []
|
||||||
for block in self.blocks:
|
offset = 0
|
||||||
outputs = block(outputs)
|
if in_cache.size(0) > 0:
|
||||||
outputs_list.append(outputs)
|
c_in = in_cache[:, :, offset:offset + self.preprocessor.padding]
|
||||||
|
else:
|
||||||
|
c_in = torch.zeros(0, 0, 0)
|
||||||
|
|
||||||
normalized_outputs = []
|
outputs, c_out = self.preprocessor(outputs, c_in)
|
||||||
output_size = outputs_list[-1].shape[-1]
|
outputs = self.relu(outputs)
|
||||||
for x in outputs_list:
|
out_caches.append(c_out)
|
||||||
remove_length = x.shape[-1] - output_size
|
offset += self.preprocessor.padding
|
||||||
if self.causal and remove_length > 0:
|
for block in self.blocks:
|
||||||
normalized_outputs.append(x[:, :, remove_length:])
|
if in_cache.size(0) > 0:
|
||||||
elif not self.causal and remove_length > 1:
|
c_in = in_cache[:, :, offset:offset + block.padding]
|
||||||
half_remove_length = remove_length // 2
|
|
||||||
normalized_outputs.append(
|
|
||||||
x[:, :, half_remove_length:-half_remove_length]
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
normalized_outputs.append(x)
|
c_in = torch.zeros(0, 0, 0)
|
||||||
|
outputs, c_out = block(outputs, c_in)
|
||||||
|
outputs_list.append(outputs)
|
||||||
|
out_caches.append(c_out)
|
||||||
|
offset += block.padding
|
||||||
|
|
||||||
outputs = torch.zeros_like(outputs_list[-1], dtype=outputs_list[-1].dtype)
|
outputs = torch.zeros_like(outputs_list[-1], dtype=outputs_list[-1].dtype)
|
||||||
for x in normalized_outputs:
|
for x in outputs_list:
|
||||||
outputs += x
|
outputs += x
|
||||||
outputs = outputs.transpose(1, 2)
|
outputs = outputs.transpose(1, 2) # (B, T, D)
|
||||||
# TODO(Binbin Zhang): Fix cache
|
new_cache = torch.cat(out_caches, dim=2)
|
||||||
return outputs, in_cache
|
return outputs, new_cache
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
mdtc = MDTC(3, 4, 80, 64, 5, causal=True)
|
mdtc = MDTC(3, 4, 64, 64, 5, causal=True)
|
||||||
print(mdtc)
|
print(mdtc)
|
||||||
|
|
||||||
num_params = sum(p.numel() for p in mdtc.parameters())
|
num_params = sum(p.numel() for p in mdtc.parameters())
|
||||||
print('the number of model params: {}'.format(num_params))
|
print('the number of model params: {}'.format(num_params))
|
||||||
x = torch.zeros(128, 200, 80) # batch-size * time * dim
|
x = torch.randn(128, 200, 64) # batch-size * time * dim
|
||||||
y, _ = mdtc(x) # batch-size * time * dim
|
y, c = mdtc(x)
|
||||||
print('input shape: {}'.format(x.shape))
|
print('input shape: {}'.format(x.shape))
|
||||||
print('output shape: {}'.format(y.shape))
|
print('output shape: {}'.format(y.shape))
|
||||||
|
print('cache shape: {}'.format(c.shape))
|
||||||
|
|
||||||
|
print('########################################')
|
||||||
|
for _ in range(10):
|
||||||
|
y, c = mdtc(y, c)
|
||||||
|
print('output shape: {}'.format(y.shape))
|
||||||
|
print('cache shape: {}'.format(c.shape))
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user