[model] refactor tcn and ds_tcn share the same base class (#35)
This commit is contained in:
parent
92a4c19ffe
commit
b55ae111ae
@ -20,15 +20,43 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class CnnBlock(nn.Module):
|
||||
class Block(nn.Module):
|
||||
def __init__(self,
|
||||
channel: int,
|
||||
kernel_size: int,
|
||||
dilation: int,
|
||||
dropout: float = 0.1):
|
||||
super().__init__()
|
||||
# The CNN used here is causal convolution
|
||||
self.padding = (kernel_size - 1) * dilation
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: Optional[torch.Tensor] = None):
|
||||
"""
|
||||
Args:
|
||||
x(torch.Tensor): Input tensor (B, D, T)
|
||||
Returns:
|
||||
torch.Tensor(B, D, T)
|
||||
"""
|
||||
# The CNN used here is causal convolution
|
||||
if cache is None:
|
||||
y = F.pad(x, (self.padding, 0), value=0.0)
|
||||
else:
|
||||
y = torch.cat((cache, x), dim=2)
|
||||
assert y.size(2) > self.padding
|
||||
new_cache = y[:, :, -self.padding:]
|
||||
|
||||
# self.cnn is defined in the subclass of Block
|
||||
y = self.cnn(y)
|
||||
y = y + x # residual connection
|
||||
return y, new_cache
|
||||
|
||||
|
||||
class CnnBlock(Block):
|
||||
def __init__(self,
|
||||
channel: int,
|
||||
kernel_size: int,
|
||||
dilation: int,
|
||||
dropout: float = 0.1):
|
||||
super().__init__(channel, kernel_size, dilation, dropout)
|
||||
self.cnn = nn.Sequential(
|
||||
nn.Conv1d(channel,
|
||||
channel,
|
||||
@ -40,26 +68,8 @@ class CnnBlock(nn.Module):
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: Optional[torch.Tensor] = None):
|
||||
"""
|
||||
Args:
|
||||
x(torch.Tensor): Input tensor (B, D, T)
|
||||
Returns:
|
||||
torch.Tensor(B, D, T)
|
||||
"""
|
||||
if cache is None:
|
||||
y = F.pad(x, (self.padding, 0), value=0.0)
|
||||
else:
|
||||
y = torch.cat((cache, x), dim=2)
|
||||
assert y.size(2) > self.padding
|
||||
new_cache = y[:, :, -self.padding:]
|
||||
|
||||
y = self.cnn(y)
|
||||
y = y + x # residual connection
|
||||
return y, new_cache
|
||||
|
||||
|
||||
class DsCnnBlock(nn.Module):
|
||||
class DsCnnBlock(Block):
|
||||
""" Depthwise Separable Convolution
|
||||
"""
|
||||
def __init__(self,
|
||||
@ -67,9 +77,7 @@ class DsCnnBlock(nn.Module):
|
||||
kernel_size: int,
|
||||
dilation: int,
|
||||
dropout: float = 0.1):
|
||||
super().__init__()
|
||||
# The CNN used here is causal convolution
|
||||
self.padding = (kernel_size - 1) * dilation
|
||||
super().__init__(channel, kernel_size, dilation, dropout)
|
||||
self.cnn = nn.Sequential(
|
||||
nn.Conv1d(channel,
|
||||
channel,
|
||||
@ -85,24 +93,6 @@ class DsCnnBlock(nn.Module):
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: Optional[torch.Tensor] = None):
|
||||
"""
|
||||
Args:
|
||||
x(torch.Tensor): Input tensor (B, D, T)
|
||||
Returns:
|
||||
torch.Tensor(B, D, T)
|
||||
"""
|
||||
if cache is None:
|
||||
y = F.pad(x, (self.padding, 0), value=0.0)
|
||||
else:
|
||||
y = torch.cat((cache, x), dim=2)
|
||||
assert y.size(2) > self.padding
|
||||
new_cache = y[:, :, -self.padding:]
|
||||
|
||||
y = self.cnn(y)
|
||||
y = y + x # residual connection
|
||||
return y, new_cache
|
||||
|
||||
|
||||
class TCN(nn.Module):
|
||||
def __init__(self,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user