# Copyright (c) 2021 Jingyong Hou # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn class GlobalClassifier(nn.Module): """Add a global average pooling before the classifier""" def __init__(self, classifier: nn.Module): super(GlobalClassifier, self).__init__() self.classifier = classifier def forward(self, x: torch.Tensor): x = torch.mean(x, dim=1) return self.classifier(x) class LastClassifier(nn.Module): """Select last frame to do the classification""" def __init__(self, classifier: nn.Module): super(LastClassifier, self).__init__() self.classifier = classifier def forward(self, x: torch.Tensor): x = x[:, -1, :] return self.classifier(x) class ElementClassifier(nn.Module): """Classify all the frames in an utterance""" def __init__(self, classifier: nn.Module): super(ElementClassifier, self).__init__() self.classifier = classifier def forward(self, x: torch.Tensor): return self.classifier(x) class LinearClassifier(nn.Module): """ Wrapper of Linear """ def __init__(self, input_dim, output_dim): super().__init__() self.linear = torch.nn.Linear(input_dim, output_dim) self.quant = torch.quantization.QuantStub() self.dequant = torch.quantization.DeQuantStub() def forward(self, x: torch.Tensor): x = self.quant(x) x = self.linear(x) x = self.dequant(x) return x