#!/bin/bash # Copyright 2021 Binbin Zhang # Jingyong Hou . ./path.sh export CUDA_VISIBLE_DEVICES="0" stage=-1 stop_stage=4 num_keywords=11 config=conf/mdtc.yaml norm_mean=false norm_var=false gpu_id=0 checkpoint= dir=exp/mdtc num_average=10 score_checkpoint=$dir/avg_${num_average}.pt # your data dir download_dir=/mnt/mnt-data-3/jingyong.hou/data speech_command_dir=$download_dir/speech_commands_v1 . tools/parse_options.sh || exit 1; set -euo pipefail if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "Download and extract all datasets" local/data_download.sh --dl_dir $download_dir python local/split_dataset.py $download_dir/speech_commands_v1 fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "Start preparing Kaldi format files" for x in train test valid; do data=data/$x mkdir -p $data # make wav.scp utt2spk text file find $speech_command_dir/$x -name *.wav | grep -v "_background_noise_" > $data/wav.list python local/prepare_speech_command.py --wav_list=$data/wav.list --data_dir=$data done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "Compute CMVN and Format datasets" tools/compute_cmvn_stats.py --num_workers 16 --train_config $config \ --in_scp data/train/wav.scp \ --out_cmvn data/train/global_cmvn for x in train valid test; do tools/wav_to_duration.sh --nj 8 data/$x/wav.scp data/$x/wav.dur tools/make_list.py data/$x/wav.scp data/$x/text \ data/$x/wav.dur data/$x/data.list done fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "Start training ..." mkdir -p $dir cmvn_opts= $norm_mean && cmvn_opts="--cmvn_file data/train/global_cmvn" $norm_var && cmvn_opts="$cmvn_opts --norm_var" python kws/bin/train.py --gpu $gpu_id \ --config $config \ --train_data data/train/data.list \ --cv_data data/valid/data.list \ --model_dir $dir \ --num_workers 8 \ --num_keywords $num_keywords \ --min_duration 50 \ $cmvn_opts \ ${checkpoint:+--checkpoint $checkpoint} fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # Do model average python kws/bin/average_model.py \ --dst_model $score_checkpoint \ --src_path $dir \ --num ${num_average} \ --val_best # Testing result_dir=$dir/test_$(basename $score_checkpoint) mkdir -p $result_dir python kws/bin/compute_accuracy.py --gpu 3 \ --config $dir/config.yaml \ --test_data data/test/data.list \ --batch_size 256 \ --num_workers 8 \ --checkpoint $score_checkpoint fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then python kws/bin/export_jit.py --config $dir/config.yaml \ --checkpoint $score_checkpoint \ --output_file $dir/final.zip \ --output_quant_file $dir/final.quant.zip fi