76 lines
2.2 KiB
Python
76 lines
2.2 KiB
Python
# Copyright (c) 2021 Binbin Zhang
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
|
|
# There is no right context or lookahead in our Subsampling design, so
|
|
# If there is CNN in Subsampling, it's a causal CNN.
|
|
|
|
|
|
class SubsamplingBase(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.subsampling_rate = 1
|
|
|
|
|
|
class NoSubsampling(SubsamplingBase):
|
|
"""No subsampling in accordance to the 'none' preprocessing
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x
|
|
|
|
|
|
class LinearSubsampling1(SubsamplingBase):
|
|
"""Linear transform the input without subsampling
|
|
"""
|
|
def __init__(self, idim: int, odim: int):
|
|
super().__init__()
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(idim, odim),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.subsampling_rate = 1
|
|
self.quant = torch.quantization.QuantStub()
|
|
self.dequant = torch.quantization.DeQuantStub()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.quant(x)
|
|
x = self.out(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def fuse_modules(self):
|
|
torch.quantization.fuse_modules(self, [['out.0', 'out.1']],
|
|
inplace=True)
|
|
|
|
|
|
class Conv1dSubsampling1(SubsamplingBase):
|
|
"""Conv1d transform without subsampling
|
|
"""
|
|
def __init__(self, idim: int, odim: int):
|
|
super().__init__()
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Conv1d(idim, odim, 3),
|
|
torch.nn.BatchNorm1d(odim),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.subsampling_rate = 1
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.out(x)
|
|
return x
|