wekws/kws/bin/train.py
2021-11-10 22:49:53 +08:00

244 lines
9.3 KiB
Python

# Copyright (c) 2020 Binbin Zhang
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import copy
import logging
import os
import torch
import torch.distributed as dist
import torch.optim as optim
import yaml
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from kws.dataset.dataset import Dataset
from kws.utils.checkpoint import load_checkpoint, save_checkpoint
from kws.model.kws_model import init_model
from kws.utils.executor import Executor
def get_args():
parser = argparse.ArgumentParser(description='training your network')
parser.add_argument('--config', required=True, help='config file')
parser.add_argument('--train_data', required=True, help='train data file')
parser.add_argument('--cv_data', required=True, help='cv data file')
parser.add_argument('--gpu',
type=int,
default=-1,
help='gpu id for this local rank, -1 for cpu')
parser.add_argument('--model_dir', required=True, help='save model dir')
parser.add_argument('--checkpoint', help='checkpoint model')
parser.add_argument('--tensorboard_dir',
default='tensorboard',
help='tensorboard log dir')
parser.add_argument('--ddp.rank',
dest='rank',
default=0,
type=int,
help='global rank for distributed training')
parser.add_argument('--ddp.world_size',
dest='world_size',
default=-1,
type=int,
help='''number of total processes/gpus for
distributed training''')
parser.add_argument('--ddp.dist_backend',
dest='dist_backend',
default='nccl',
choices=['nccl', 'gloo'],
help='distributed backend')
parser.add_argument('--ddp.init_method',
dest='init_method',
default=None,
help='ddp init method')
parser.add_argument('--num_workers',
default=0,
type=int,
help='num of subprocess workers for reading')
parser.add_argument('--pin_memory',
action='store_true',
default=False,
help='Use pinned memory buffers used for reading')
parser.add_argument('--cmvn_file', default=None, help='global cmvn file')
parser.add_argument('--norm_var',
action='store_true',
default=False,
help='norm var option')
parser.add_argument('--num_keywords',
default=1,
type=int,
help='number of keywords')
parser.add_argument('--min_duration',
default=50,
type=int,
help='min duration frames of the keyword')
parser.add_argument('--prefetch',
default=100,
type=int,
help='prefetch number')
args = parser.parse_args()
return args
def main():
args = get_args()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
# Set random seed
torch.manual_seed(777)
print(args)
with open(args.config, 'r') as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
distributed = args.world_size > 1
if distributed:
logging.info('training on multiple gpus, this gpu {}'.format(args.gpu))
dist.init_process_group(args.dist_backend,
init_method=args.init_method,
world_size=args.world_size,
rank=args.rank)
train_conf = configs['dataset_conf']
cv_conf = copy.deepcopy(train_conf)
cv_conf['speed_perturb'] = False
cv_conf['spec_aug'] = False
cv_conf['shuffle'] = False
train_dataset = Dataset(args.train_data, train_conf)
cv_dataset = Dataset(args.cv_data, cv_conf)
train_data_loader = DataLoader(train_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
prefetch_factor=args.prefetch)
cv_data_loader = DataLoader(cv_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
prefetch_factor=args.prefetch)
input_dim = configs['dataset_conf']['feature_extraction_conf'][
'num_mel_bins']
output_dim = args.num_keywords
# Write model_dir/config.yaml for inference and export
configs['model']['input_dim'] = input_dim
configs['model']['output_dim'] = output_dim
if args.cmvn_file is not None:
configs['model']['cmvn'] = {}
configs['model']['cmvn']['norm_var'] = args.norm_var
configs['model']['cmvn']['cmvn_file'] = args.cmvn_file
if args.rank == 0:
saved_config_path = os.path.join(args.model_dir, 'config.yaml')
with open(saved_config_path, 'w') as fout:
data = yaml.dump(configs)
fout.write(data)
# Init asr model from configs
model = init_model(configs['model'])
print(model)
num_params = sum(p.numel() for p in model.parameters())
print('the number of model params: {}'.format(num_params))
# !!!IMPORTANT!!!
# Try to export the model by script, if fails, we should refine
# the code to satisfy the script export requirements
#if args.rank == 0:
#script_model = torch.jit.script(model)
#script_model.save(os.path.join(args.model_dir, 'init.zip'))
executor = Executor()
# If specify checkpoint, load some info from checkpoint
if args.checkpoint is not None:
infos = load_checkpoint(model, args.checkpoint)
else:
infos = {}
start_epoch = infos.get('epoch', -1) + 1
cv_loss = infos.get('cv_loss', 0.0)
model_dir = args.model_dir
writer = None
if args.rank == 0:
os.makedirs(model_dir, exist_ok=True)
exp_id = os.path.basename(model_dir)
writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id))
if distributed:
assert (torch.cuda.is_available())
# cuda model is required for nn.parallel.DistributedDataParallel
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(
model, find_unused_parameters=True)
device = torch.device("cuda")
else:
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
model = model.to(device)
optimizer = optim.Adam(model.parameters(), **configs['optim_conf'])
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=0.5,
patience=3,
min_lr=1e-6,
threshold=0.01,
)
training_config = configs['training_config']
training_config['min_duration'] = args.min_duration
num_epochs = training_config.get('max_epoch', 100)
final_epoch = None
if start_epoch == 0 and args.rank == 0:
save_model_path = os.path.join(model_dir, 'init.pt')
save_checkpoint(model, save_model_path)
# Start training loop
for epoch in range(start_epoch, num_epochs):
train_dataset.set_epoch(epoch)
training_config['epoch'] = epoch
lr = optimizer.param_groups[0]['lr']
logging.info('Epoch {} TRAIN info lr {}'.format(epoch, lr))
executor.train(model, optimizer, train_data_loader, device, writer,
training_config)
cv_loss = executor.cv(model, cv_data_loader, device, training_config)
logging.info('Epoch {} CV info cv_loss {}'.format(epoch, cv_loss))
if args.rank == 0:
save_model_path = os.path.join(model_dir, '{}.pt'.format(epoch))
save_checkpoint(model, save_model_path, {
'epoch': epoch,
'lr': lr,
'cv_loss': cv_loss,
})
writer.add_scalar('epoch/cv_loss', cv_loss, epoch)
writer.add_scalar('epoch/lr', lr, epoch)
final_epoch = epoch
scheduler.step(cv_loss)
if final_epoch is not None and args.rank == 0:
final_model_path = os.path.join(model_dir, 'final.pt')
os.symlink('{}.pt'.format(final_epoch), final_model_path)
writer.close()
if __name__ == '__main__':
main()