wekws/kws/dataset/processor.py
2021-11-10 22:49:53 +08:00

307 lines
9.1 KiB
Python

# Copyright (c) 2021 Binbin Zhang
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import json
import random
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence
def parse_raw(data):
""" Parse key/wav/txt from json line
Args:
data: Iterable[str], str is a json line has key/wav/txt
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert 'src' in sample
json_line = sample['src']
obj = json.loads(json_line)
assert 'key' in obj
assert 'wav' in obj
assert 'txt' in obj
key = obj['key']
wav_file = obj['wav']
txt = obj['txt']
try:
waveform, sample_rate = torchaudio.load(wav_file)
example = dict(key=key,
label=txt,
wav=waveform,
sample_rate=sample_rate)
yield example
except Exception as ex:
logging.warning('Failed to read {}'.format(wav_file))
def filter(data, max_length=10240, min_length=10):
""" Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample['wav'].size(1) / sample['sample_rate'] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
yield sample
def resample(data, resample_rate=16000):
""" Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
if sample_rate != resample_rate:
sample['sample_rate'] = resample_rate
sample['wav'] = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
yield sample
def speed_perturb(data, speeds=None):
""" Apply speed perturb to the data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
speeds(List[float]): optional speed
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
if speeds is None:
speeds = [0.9, 1.0, 1.1]
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
speed = random.choice(speeds)
if speed != 1.0:
wav, _ = torchaudio.sox_effects.apply_effects_tensor(
waveform, sample_rate,
[['speed', str(speed)], ['rate', str(sample_rate)]])
sample['wav'] = wav
yield sample
def compute_mfcc(
data,
feature_type='mfcc',
num_ceps=80,
num_mel_bins=80,
frame_length=25,
frame_shift=10,
dither=0.0,
):
"""Extract mfcc
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
assert 'key' in sample
assert 'label' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.mfcc(
waveform,
num_ceps=num_ceps,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sample_frequency=sample_rate,
)
yield dict(key=sample['key'], label=sample['label'], feat=mat)
def compute_fbank(data,
feature_type='fbank',
num_mel_bins=23,
frame_length=25,
frame_shift=10,
dither=0.0):
""" Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
assert 'key' in sample
assert 'label' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.fbank(waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sample_frequency=sample_rate)
yield dict(key=sample['key'], label=sample['label'], feat=mat)
def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10):
""" Do spec augmentation
Inplace operation
Args:
data: Iterable[{key, feat, label}]
num_t_mask: number of time mask to apply
num_f_mask: number of freq mask to apply
max_t: max width of time mask
max_f: max width of freq mask
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'feat' in sample
x = sample['feat']
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
max_freq = y.size(1)
# time mask
for i in range(num_t_mask):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
y[start:end, :] = 0
# freq mask
for i in range(num_f_mask):
start = random.randint(0, max_freq - 1)
length = random.randint(1, max_f)
end = min(max_freq, start + length)
y[:, start:end] = 0
sample['feat'] = y
yield sample
def shuffle(data, shuffle_size=1000):
""" Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= shuffle_size:
random.shuffle(buf)
for x in buf:
yield x
buf = []
# The sample left over
random.shuffle(buf)
for x in buf:
yield x
def batch(data, batch_size=16):
""" Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= batch_size:
yield buf
buf = []
if len(buf) > 0:
yield buf
def padding(data):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
feats_length = torch.tensor([x['feat'].size(0) for x in sample],
dtype=torch.int32)
order = torch.argsort(feats_length, descending=True)
feats_lengths = torch.tensor(
[sample[i]['feat'].size(0) for i in order], dtype=torch.int32)
sorted_feats = [sample[i]['feat'] for i in order]
sorted_keys = [sample[i]['key'] for i in order]
sorted_labels = torch.tensor([sample[i]['label'] for i in order],
dtype=torch.int64)
padded_feats = pad_sequence(sorted_feats,
batch_first=True,
padding_value=0)
yield (sorted_keys, padded_feats, sorted_labels, feats_lengths)