Menglong Xu 6da85d4662
[wekws] add online noise and rir argumentation (#115)
* [wekws] add online noise and rir  argumentation

* format

* format

* update copyright

Co-authored-by: menglong.xu <menglong.xu>
2022-11-28 21:12:26 +08:00

136 lines
3.7 KiB
Bash
Executable File

#!/bin/bash
# Copyright 2021 Binbin Zhang
# Menglong Xu
. ./path.sh
stage=0
stop_stage=4
num_keywords=1
config=conf/ds_tcn.yaml
norm_mean=true
norm_var=true
gpus="0"
checkpoint=
dir=exp/ds_tcn
num_average=30
score_checkpoint=$dir/avg_${num_average}.pt
download_dir=./data/local # your data dir
noise_lmdb=
reverb_lmdb=
. tools/parse_options.sh || exit 1;
set -euo pipefail
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "Extracte all datasets"
local/snips_data_extract.sh --dl_dir $download_dir
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "Preparing datasets..."
mkdir -p dict
echo "<filler> -1" > dict/words.txt
echo "Hey_Snips 0" >> dict/words.txt
for folder in train dev test; do
mkdir -p data/$folder
json_path=$download_dir/hey_snips_research_6k_en_train_eval_clean_ter/$folder.json
local/prepare_data.py $download_dir/hey_snips_research_6k_en_train_eval_clean_ter/audio_files $json_path \
data/$folder
done
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "Compute CMVN and Format datasets"
tools/compute_cmvn_stats.py --num_workers 16 --train_config $config \
--in_scp data/train/wav.scp \
--out_cmvn data/train/global_cmvn
for x in train dev test; do
tools/wav_to_duration.sh --nj 8 data/$x/wav.scp data/$x/wav.dur
tools/make_list.py data/$x/wav.scp data/$x/text \
data/$x/wav.dur data/$x/data.list
done
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "Start training ..."
mkdir -p $dir
cmvn_opts=
$norm_mean && cmvn_opts="--cmvn_file data/train/global_cmvn"
$norm_var && cmvn_opts="$cmvn_opts --norm_var"
num_gpus=$(echo $gpus | awk -F ',' '{print NF}')
torchrun --standalone --nnodes=1 --nproc_per_node=$num_gpus \
wekws/bin/train.py --gpus $gpus \
--config $config \
--train_data data/train/data.list \
--cv_data data/dev/data.list \
--model_dir $dir \
--num_workers 8 \
--num_keywords $num_keywords \
--min_duration 50 \
--seed 777 \
$cmvn_opts \
${reverb_lmdb:+--reverb_lmdb $reverb_lmdb} \
${noise_lmdb:+--noise_lmdb $noise_lmdb} \
${checkpoint:+--checkpoint $checkpoint}
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "Do model average, Compute FRR/FAR ..."
python wekws/bin/average_model.py \
--dst_model $score_checkpoint \
--src_path $dir \
--num ${num_average} \
--val_best
result_dir=$dir/test_$(basename $score_checkpoint)
mkdir -p $result_dir
python wekws/bin/score.py \
--config $dir/config.yaml \
--test_data data/test/data.list \
--batch_size 256 \
--checkpoint $score_checkpoint \
--score_file $result_dir/score.txt \
--num_workers 8
first_keyword=0
last_keyword=$(($num_keywords+$first_keyword-1))
for keyword in $(seq $first_keyword $last_keyword); do
python wekws/bin/compute_det.py \
--keyword $keyword \
--test_data data/test/data.list \
--score_file $result_dir/score.txt \
--stats_file $result_dir/stats.${keyword}.txt
done
python wekws/bin/plot_det_curve.py \
--keywords_dict dict/words.txt \
--stats_dir $result_dir \
--figure_file $result_dir/det.png \
--xlim 10 \
--x_step 2 \
--ylim 10 \
--y_step 2
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
jit_model=$(basename $score_checkpoint | sed -e 's:.pt$:.zip:g')
onnx_model=$(basename $score_checkpoint | sed -e 's:.pt$:.onnx:g')
python wekws/bin/export_jit.py \
--config $dir/config.yaml \
--checkpoint $score_checkpoint \
--jit_model $dir/$jit_model
python wekws/bin/export_onnx.py \
--config $dir/config.yaml \
--checkpoint $score_checkpoint \
--onnx_model $dir/$onnx_model
fi