wekws/kws/utils/executor.py
xiaohou c48c959807
[recipe] suport speech command dataset (#21)
* [recipe] suport speech command dataset

* format

* format

* format

* update run.sh
2021-12-03 21:07:42 +08:00

93 lines
3.5 KiB
Python

# Copyright (c) 2021 Binbin Zhang
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import torch
from torch.nn.utils import clip_grad_norm_
from kws.model.loss import criterion
class Executor:
def __init__(self):
self.step = 0
def train(self, model, optimizer, data_loader, device, writer, args):
''' Train one epoch
'''
model.train()
clip = args.get('grad_clip', 50.0)
log_interval = args.get('log_interval', 10)
epoch = args.get('epoch', 0)
min_duration = args.get('min_duration', 0)
num_total_batch = 0
total_loss = 0.0
for batch_idx, batch in enumerate(data_loader):
key, feats, target, feats_lengths = batch
feats = feats.to(device)
target = target.to(device)
feats_lengths = feats_lengths.to(device)
num_utts = feats_lengths.size(0)
if num_utts == 0:
continue
logits = model(feats)
loss_type = args.get('criterion', 'max_pooling')
loss, acc = criterion(loss_type, logits, target, feats_lengths)
loss.backward()
grad_norm = clip_grad_norm_(model.parameters(), clip)
if torch.isfinite(grad_norm):
optimizer.step()
if batch_idx % log_interval == 0:
logging.debug(
'TRAIN Batch {}/{} loss {:.8f} acc {:.8f}'.format(
epoch, batch_idx, loss.item(), acc))
def cv(self, model, data_loader, device, args):
''' Cross validation on
'''
model.eval()
log_interval = args.get('log_interval', 10)
epoch = args.get('epoch', 0)
# in order to avoid division by 0
num_seen_utts = 1
total_loss = 0.0
total_acc = 0.0
with torch.no_grad():
for batch_idx, batch in enumerate(data_loader):
key, feats, target, feats_lengths = batch
feats = feats.to(device)
target = target.to(device)
feats_lengths = feats_lengths.to(device)
num_utts = feats_lengths.size(0)
if num_utts == 0:
continue
logits = model(feats)
loss, acc = criterion(args.get('criterion', 'max_pooling'),
logits, target, feats_lengths)
if torch.isfinite(loss):
num_seen_utts += num_utts
total_loss += loss.item() * num_utts
total_acc += acc * num_utts
if batch_idx % log_interval == 0:
logging.debug(
'CV Batch {}/{} loss {:.8f} acc {:.8f} history loss {:.8f}'
.format(epoch, batch_idx, loss.item(), acc,
total_loss / num_seen_utts))
return total_loss / num_seen_utts, total_acc / num_seen_utts
def test(self, model, data_loader, device, args):
return self.cv(model, data_loader, device, args)