* [kws] add static quantize * refine lint error in shuffle_list.py * refine lint * fix topo
147 lines
4.2 KiB
Bash
Executable File
147 lines
4.2 KiB
Bash
Executable File
#!/bin/bash
|
|
# Copyright 2021 Binbin Zhang(binbzha@qq.com)
|
|
|
|
. ./path.sh
|
|
|
|
stage=0
|
|
stop_stage=4
|
|
num_keywords=2
|
|
|
|
config=conf/ds_tcn.yaml
|
|
norm_mean=true
|
|
norm_var=true
|
|
gpus="0,1"
|
|
|
|
checkpoint=
|
|
dir=exp/ds_tcn
|
|
|
|
num_average=30
|
|
score_checkpoint=$dir/avg_${num_average}.pt
|
|
|
|
download_dir=./data/local # your data dir
|
|
|
|
. tools/parse_options.sh || exit 1;
|
|
|
|
|
|
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
|
echo "Download and extracte all datasets"
|
|
local/mobvoi_data_download.sh --dl_dir $download_dir
|
|
fi
|
|
|
|
|
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
echo "Preparing datasets..."
|
|
mkdir -p dict
|
|
echo "<filler> -1" > dict/words.txt
|
|
echo "Hi_Xiaowen 0" >> dict/words.txt
|
|
echo "Nihao_Wenwen 1" >> dict/words.txt
|
|
|
|
for folder in train dev test; do
|
|
mkdir -p data/$folder
|
|
for prefix in p n; do
|
|
mkdir -p data/${prefix}_$folder
|
|
json_path=$download_dir/mobvoi_hotword_dataset_resources/${prefix}_$folder.json
|
|
local/prepare_data.py $download_dir/mobvoi_hotword_dataset $json_path \
|
|
data/${prefix}_$folder
|
|
done
|
|
cat data/p_$folder/wav.scp data/n_$folder/wav.scp > data/$folder/wav.scp
|
|
cat data/p_$folder/text data/n_$folder/text > data/$folder/text
|
|
rm -rf data/p_$folder data/n_$folder
|
|
done
|
|
fi
|
|
|
|
|
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
echo "Compute CMVN and Format datasets"
|
|
tools/compute_cmvn_stats.py --num_workers 16 --train_config $config \
|
|
--in_scp data/train/wav.scp \
|
|
--out_cmvn data/train/global_cmvn
|
|
|
|
for x in train dev test; do
|
|
tools/wav_to_duration.sh --nj 8 data/$x/wav.scp data/$x/wav.dur
|
|
tools/make_list.py data/$x/wav.scp data/$x/text \
|
|
data/$x/wav.dur data/$x/data.list
|
|
done
|
|
fi
|
|
|
|
|
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
echo "Start training ..."
|
|
mkdir -p $dir
|
|
cmvn_opts=
|
|
$norm_mean && cmvn_opts="--cmvn_file data/train/global_cmvn"
|
|
$norm_var && cmvn_opts="$cmvn_opts --norm_var"
|
|
num_gpus=$(echo $gpus | awk -F ',' '{print NF}')
|
|
torchrun --standalone --nnodes=1 --nproc_per_node=$num_gpus \
|
|
kws/bin/train.py --gpus $gpus \
|
|
--config $config \
|
|
--train_data data/train/data.list \
|
|
--cv_data data/dev/data.list \
|
|
--model_dir $dir \
|
|
--num_workers 8 \
|
|
--num_keywords $num_keywords \
|
|
--min_duration 50 \
|
|
--seed 666 \
|
|
$cmvn_opts \
|
|
${checkpoint:+--checkpoint $checkpoint}
|
|
fi
|
|
|
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
|
echo "Do model average, Compute FRR/FAR ..."
|
|
python kws/bin/average_model.py \
|
|
--dst_model $score_checkpoint \
|
|
--src_path $dir \
|
|
--num ${num_average} \
|
|
--val_best
|
|
result_dir=$dir/test_$(basename $score_checkpoint)
|
|
mkdir -p $result_dir
|
|
python kws/bin/score.py \
|
|
--config $dir/config.yaml \
|
|
--test_data data/test/data.list \
|
|
--batch_size 256 \
|
|
--checkpoint $score_checkpoint \
|
|
--score_file $result_dir/score.txt \
|
|
--num_workers 8
|
|
for keyword in 0 1; do
|
|
python kws/bin/compute_det.py \
|
|
--keyword $keyword \
|
|
--test_data data/test/data.list \
|
|
--score_file $result_dir/score.txt \
|
|
--stats_file $result_dir/stats.${keyword}.txt
|
|
done
|
|
fi
|
|
|
|
|
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
|
echo "Static quantization, compute FRR/FAR..."
|
|
# Apply static quantization
|
|
quantize_score_checkpoint=$(basename $score_checkpoint | sed -e 's:.pt$:.quant.zip:g')
|
|
cat data/train/data.list | python tools/shuffle_list.py --seed 777 | \
|
|
head -n 10000 > $dir/calibration.list
|
|
python kws/bin/static_quantize.py \
|
|
--config $dir/config.yaml \
|
|
--test_data $dir/calibration.list \
|
|
--checkpoint $score_checkpoint \
|
|
--num_workers 8 \
|
|
--script_model $dir/$quantize_score_checkpoint
|
|
|
|
result_dir=$dir/test_$(basename $quantize_score_checkpoint)
|
|
mkdir -p $result_dir
|
|
python kws/bin/score.py \
|
|
--config $dir/config.yaml \
|
|
--test_data data/test/data.list \
|
|
--batch_size 256 \
|
|
--jit_model \
|
|
--checkpoint $dir/$quantize_score_checkpoint \
|
|
--score_file $result_dir/score.txt \
|
|
--num_workers 8
|
|
for keyword in 0 1; do
|
|
python kws/bin/compute_det.py \
|
|
--keyword $keyword \
|
|
--test_data data/test/data.list \
|
|
--score_file $result_dir/score.txt \
|
|
--stats_file $result_dir/stats.${keyword}.txt
|
|
done
|
|
fi
|
|
|