* [kws] add static quantize * refine lint error in shuffle_list.py * refine lint * fix topo
129 lines
4.8 KiB
Python
129 lines
4.8 KiB
Python
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import os
|
|
import sys
|
|
|
|
import torch
|
|
import yaml
|
|
from torch.utils.data import DataLoader
|
|
|
|
from kws.dataset.dataset import Dataset
|
|
from kws.model.kws_model import init_model
|
|
from kws.utils.checkpoint import load_checkpoint
|
|
from kws.utils.mask import padding_mask
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(description='recognize with your model')
|
|
parser.add_argument('--config', required=True, help='config file')
|
|
parser.add_argument('--test_data', required=True, help='test data file')
|
|
parser.add_argument('--gpu',
|
|
type=int,
|
|
default=-1,
|
|
help='gpu id for this rank, -1 for cpu')
|
|
parser.add_argument('--checkpoint', required=True, help='checkpoint model')
|
|
parser.add_argument('--batch_size',
|
|
default=16,
|
|
type=int,
|
|
help='batch size for inference')
|
|
parser.add_argument('--num_workers',
|
|
default=0,
|
|
type=int,
|
|
help='num of subprocess workers for reading')
|
|
parser.add_argument('--pin_memory',
|
|
action='store_true',
|
|
default=False,
|
|
help='Use pinned memory buffers used for reading')
|
|
parser.add_argument('--prefetch',
|
|
default=100,
|
|
type=int,
|
|
help='prefetch number')
|
|
parser.add_argument('--score_file',
|
|
required=True,
|
|
help='output score file')
|
|
parser.add_argument('--jit_model',
|
|
action='store_true',
|
|
default=False,
|
|
help='Use pinned memory buffers used for reading')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
logging.basicConfig(level=logging.DEBUG,
|
|
format='%(asctime)s %(levelname)s %(message)s')
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
|
|
|
with open(args.config, 'r') as fin:
|
|
configs = yaml.load(fin, Loader=yaml.FullLoader)
|
|
|
|
test_conf = copy.deepcopy(configs['dataset_conf'])
|
|
test_conf['filter_conf']['max_length'] = 102400
|
|
test_conf['filter_conf']['min_length'] = 0
|
|
test_conf['speed_perturb'] = False
|
|
test_conf['spec_aug'] = False
|
|
test_conf['shuffle'] = False
|
|
test_conf['feature_extraction_conf']['dither'] = 0.0
|
|
test_conf['batch_conf']['batch_size'] = args.batch_size
|
|
|
|
test_dataset = Dataset(args.test_data, test_conf)
|
|
test_data_loader = DataLoader(test_dataset,
|
|
batch_size=None,
|
|
pin_memory=args.pin_memory,
|
|
num_workers=args.num_workers,
|
|
prefetch_factor=args.prefetch)
|
|
|
|
if args.jit_model:
|
|
model = torch.jit.load(args.checkpoint)
|
|
# For script model, only cpu is supported.
|
|
device = torch.device('cpu')
|
|
else:
|
|
# Init asr model from configs
|
|
model = init_model(configs['model'])
|
|
load_checkpoint(model, args.checkpoint)
|
|
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
|
device = torch.device('cuda' if use_cuda else 'cpu')
|
|
model = model.to(device)
|
|
|
|
model.eval()
|
|
with torch.no_grad(), open(args.score_file, 'w', encoding='utf8') as fout:
|
|
for batch_idx, batch in enumerate(test_data_loader):
|
|
keys, feats, target, lengths = batch
|
|
feats = feats.to(device)
|
|
lengths = lengths.to(device)
|
|
mask = padding_mask(lengths).unsqueeze(2)
|
|
logits = torch.sigmoid(model(feats))
|
|
logits = logits.masked_fill(mask, 0.0)
|
|
max_logits, _ = logits.max(dim=1)
|
|
max_logits = max_logits.cpu()
|
|
for i in range(len(keys)):
|
|
key = keys[i]
|
|
score = max_logits[i]
|
|
score = ' '.join([str(x) for x in score.tolist()])
|
|
fout.write('{} {}\n'.format(key, score))
|
|
if batch_idx % 10 == 0:
|
|
print('Progress batch {}'.format(batch_idx))
|
|
sys.stdout.flush()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|