update rknn-toolkit2/rknn-toolkit-lite2 to 1.3.0
Signed-off-by: raul.rao <raul.rao@rock-chips.com>
This commit is contained in:
parent
480fc0ce47
commit
9ad79343fa
20
README.md
20
README.md
@ -1,27 +1,31 @@
|
||||
# Introduction
|
||||
RKNN-Toolkit2 is a software development kit for users to perform model conversion, inference and performance evaluation on PC and Rockchip NPU platforms (RK3566, RK3568, RK3588, RK3588S).
|
||||
RKNN-Toolkit2 is a software development kit for users to perform model conversion, inference and performance evaluation on PC and Rockchip NPU platforms (RK3566, RK3568, RK3588, RK3588S, RV1103, RV1106).
|
||||
|
||||
RKNN-Toolkit-Lite2 provides Python programming interfaces for Rockchip NPU platform (RK3566, RK3568, RK3588, RK3588S) to help users deploy RKNN models and accelerate the implementation of AI applications.
|
||||
|
||||
# Download
|
||||
- You can also download all packages, docker image, examples, docs and platform-tools from baidu cloud: [rknn-toolkit2-v1.2.0](https://eyun.baidu.com/s/3jJ4k51s), fetch code: rknn
|
||||
- You can also download all packages, docker image, examples, docs and platform-tools from baidu cloud: [RK_NPU_SDK](https://eyun.baidu.com/s/3eTDMk6Y), fetch code: rknn
|
||||
|
||||
# Notes
|
||||
- Currently rknn-toolkit2 is not compatible with [rknn-toolkit](https://github.com/rockchip-linux/rknn-toolkit)
|
||||
- Currently only support on Ubuntu 18.04 python 3.6
|
||||
- Currently only support on Ubuntu 18.04 python 3.6 / Ubuntu 20.04 python 3.8
|
||||
- If you have problem about RKNN-Toolkit2, it is recommended to create a issue or get answers from [Issues](https://github.com/rockchip-linux/rknn-toolkit2/issues).
|
||||
- Latest version:1.2.0(Release version)
|
||||
- Latest version:1.3.0(Release version)
|
||||
|
||||
# Checksums
|
||||
## MD5
|
||||
```
|
||||
148f076c8707b066307f169975259bbb rknn_toolkit2-1.2.0_f7bb160f-cp36-cp36m-linux_x86_64.whl
|
||||
69ffac3f944cf682acf563245e532405 packages/rknn_toolkit2-1.3.0_11912b58-cp36-cp36m-linux_x86_64.whl
|
||||
|
||||
fdf38d4ec4a8a0ac3c9faeba38baa908 rknn-toolkit2-1.2.0-cp36-docker.tar.gz
|
||||
f37e2296e631587b929a75028dd235bf packages/rknn_toolkit2-1.3.0_11912b58-cp38-cp38-linux_x86_64.whl
|
||||
|
||||
e4430d25066487172a4a861b04098495 rknn_toolkit_lite2-1.2.0-cp37-cp37m-linux_aarch64.whl
|
||||
f269a9cf3fa209b2615efdd0711f3f18 docker/rknn-toolkit2-1.3.0-cp36-docker.tar.gz
|
||||
|
||||
dd9f5509d3342b6cbc52d5814d0909d3 rknn_toolkit_lite2-1.2.0-cp39-cp39-linux_aarch64.whl
|
||||
db40be96541a121b4c77109d829089b6 docker/rknn-toolkit2-1.3.0-cp38-docker.tar.gz
|
||||
|
||||
4dff57052f94a9c080774ab0e6af1d56 rknn_toolkit_lite2/packages/rknn_toolkit_lite2-1.3.0-cp37-cp37m-linux_aarch64.whl
|
||||
|
||||
1085cd7ee4bb18ef17b03d66e5428d69 rknn_toolkit_lite2/packages/rknn_toolkit_lite2-1.3.0-cp39-cp39-linux_aarch64.whl
|
||||
```
|
||||
# Feedback and Community Suport
|
||||
Two ways are followed:
|
||||
|
||||
Binary file not shown.
BIN
Rockchip_Quick_Start_RKNN_SDK_V1.3.0_CN.pdf
Normal file
BIN
Rockchip_Quick_Start_RKNN_SDK_V1.3.0_CN.pdf
Normal file
Binary file not shown.
@ -2,11 +2,11 @@
|
||||
|
||||
## Explanation of terms:
|
||||
|
||||
Remarks:
|
||||
**Remarks**:
|
||||
|
||||
Operators' specifications must meet the remarks' requirements.
|
||||
|
||||
Broadcast rule:
|
||||
**Broadcast rule**:
|
||||
|
||||
- per-layer:
|
||||
|
||||
@ -26,6 +26,30 @@ Broadcast rule:
|
||||
|
||||
shape(A) = (2, 3, 4, 5), shape(B) = (5,) ==> shape(result) = (2, 3, 4, 5)
|
||||
|
||||
**Input Size Restrictions Description**
|
||||
|
||||
|
||||
Assuming that input size is [N,H,W,C] (layout is NHWC)
|
||||
|
||||
- Case 1: the first layer is **Convolution**, whose kernel size is [kernel_height, kernel_width]
|
||||
|
||||
**W * kernel_height < 7168**
|
||||
|
||||
**kernel_height * kernel_width < 128**
|
||||
|
||||
|
||||
- Case 2: first layer is not Convolution, and C == 1 or C == 3 or C == 4
|
||||
|
||||
**W < 7168**
|
||||
|
||||
- others:
|
||||
|
||||
**No Restrictions**
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## ONNX OPs supported by RKNN Toolkit2
|
||||
|
||||
@ -33,63 +57,65 @@ According to [ONNX official instructions](https://github.com/microsoft/onnxrunti
|
||||
The list of ONNX OPs supported by RKNN Toolkit2 is as follows:
|
||||
|
||||
| **Operators** | **Remarks** |
|
||||
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| --------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Add | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
| AveragePool | channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7] |
|
||||
| ArgMin ||
|
||||
| ArgMax ||
|
||||
| AveragePool | channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]<br />auto_pad: NOTSET<br />count_include_pad: 1 <br />ceil_mode: 0 |
|
||||
| ArgMin | |
|
||||
| ArgMax | |
|
||||
| BatchNormalization | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| cast | only support bool/int8/float |
|
||||
| Clip | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Concat | axis: 1,2,3 |
|
||||
| Conv | channel: unlimited <br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: unlimited |
|
||||
| ConvTranspose | channel: unlimited<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: unlimited |
|
||||
| DepthToSpace ||
|
||||
| Div | support broadcast rule: per-element/other |
|
||||
| Elu ||
|
||||
| Exp ||
|
||||
| Flatten ||
|
||||
| Gather ||
|
||||
| Gemm | channel: unlimited<br /> One input should be Const |
|
||||
| Concat | |
|
||||
| Conv | channel: [0, 150000] <br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />pad left/right/top/bottom: [0, 15] |
|
||||
| ConvTranspose | channel: [0, 150000]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15] |
|
||||
| DepthToSpace | |
|
||||
| Div | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8192]<br />support broadcast rule: per-element/other |
|
||||
| Elu | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br /> |
|
||||
| Exp | |
|
||||
| Flatten | |
|
||||
| Gather | |
|
||||
| Gemm | channel: [0, 150000]<br />One input should be Const |
|
||||
| GlobalAveragePool | channel: [1, 8192]<br />kernel height/width: [1, 343]<br /> |
|
||||
| GlobalMaxPool | channel: [1, 8192]<br />kernel height/width: [1, 343]<br /> |
|
||||
| Greater | support broadcast rule: per-element/other |
|
||||
| HardSigmoid ||
|
||||
| InstanceNormalization ||
|
||||
| HardSwish ||
|
||||
| LeakyRelu | channel: unlimited<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| HardSigmoid | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| HardSwish | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| InstanceNormalization | |
|
||||
| LeakyRelu | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Less | support broadcast rule: per-element/other |
|
||||
| LpNormalization ||
|
||||
| LRN ||
|
||||
| LSTM | batchsize: 1 |
|
||||
| LpNormalization | |
|
||||
| LRN | |
|
||||
| LSTM | batchsize: 1<br />input_forget: 0 |
|
||||
| GRU | batchsize: 1 |
|
||||
| MatMul | |
|
||||
| Max | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br /> dims=4 |
|
||||
| MaxPool | channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]<br />auto_pad only support NOTSET,ceil_mode only support 0,unsupport dilations |
|
||||
| MaxRoiPool ||
|
||||
| Max | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| MaxPool | channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]<br />auto_pad: NOTSET<br />ceil_mode: 0<br />dilations: unsupport<br />storage_order: 0 |
|
||||
| MaxRoiPool | |
|
||||
| MaxUnpool | unsupport pad |
|
||||
| Min | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Mul | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
| Pad | pad value should >= 0; pad dims must be 2 when mode is reflect or edge |
|
||||
| Pow ||
|
||||
| PRelu | channel: unlimited<br />height: [1, 8192]<br />width: [1, 8176]<br />slope support broadcast rule:: per-layer/channel |
|
||||
| ReduceMax ||
|
||||
| ReduceMean | output dims <= 4 |
|
||||
| ReduceSum | output dims <= 4 |
|
||||
| ReduceMin ||
|
||||
| Pad | width: [1, 8176]<br />mode: constant<br />pads n_begin/n_end/c_begin/c_end: 1 |
|
||||
| Pow | |
|
||||
| PRelu | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />slope support broadcast rule: per-layer/channel |
|
||||
| ReduceMax | |
|
||||
| ReduceMean | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8192] |
|
||||
| ReduceSum | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8192] |
|
||||
| ReduceMin | |
|
||||
| Relu | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Reshape ||
|
||||
| Resize | bilinear(not support tf_crop_and_resize); nearest2d |
|
||||
| ReverseSequence ||
|
||||
| Reshape | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Resize | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />mode: nearest<br />scales: [1, 8] |
|
||||
| ReverseSequence | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />batch_axis: 1 <br />time_axis: 0 |
|
||||
| RoiAlign | pool type: average |
|
||||
| Sigmoid ||
|
||||
| Slice ||
|
||||
| Softmax ||
|
||||
| SpaceToDetph ||
|
||||
| Split ||
|
||||
| Squeeze ||
|
||||
| Tanh | channel: unlimited<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Tile ||
|
||||
| Transpose ||
|
||||
| Sigmoid | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Slice | steps: 1 |
|
||||
| Softmax | channel: [1, 8192]<br />axis: 1 |
|
||||
| SpaceToDetph | |
|
||||
| Split | axis: 1(channel) |
|
||||
| Sub | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
| Squeeze | |
|
||||
| Tanh | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Tile | |
|
||||
| Transpose | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Upsample (resize) | coordinate_transformation_mode unsupport tf_crop_and_resize |
|
||||
|
||||
|
||||
@ -100,37 +126,37 @@ The protocol based on the official revision of berkeley comes from [berkeley caf
|
||||
Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 is as follows:
|
||||
|
||||
| **Operators** | **Remarks** |
|
||||
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| ---------------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| BatchNorm | same as onnx BatchNormalization |
|
||||
| bn (BatchNorm + Scale) | same as onnx BatchNormalization according to https://github.com/TimoSaemann/caffe-segnet-cudnn5 |
|
||||
| BNLL ||
|
||||
| BNLL | |
|
||||
| Concat | same as onnx Concat |
|
||||
| Convolution | same as onnx Conv |
|
||||
| ConvolutionDepthwise | channel:unlimited<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15] |
|
||||
| Crop ||
|
||||
| ConvolutionDepthwise | kernel height/width: [1, 8]<br />kernels: 1<br />others same as onnx Conv |
|
||||
| Crop | |
|
||||
| Deconvolution | same as ConvTranspose |
|
||||
| Dropout ||
|
||||
| Dropout | |
|
||||
| Eltwise | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
| Flatten ||
|
||||
| HardSigmoid ||
|
||||
| Flatten | |
|
||||
| HardSigmoid | |
|
||||
| InnerProduct | same as onnx Gemm |
|
||||
| LRN | same as onnx LRN |
|
||||
| Lstm | same as onnx LSTM according to https://github.com/xmfbit/warpctc-caffe |
|
||||
| Normalize ||
|
||||
| Normalize | |
|
||||
| Permute | same as onnx Transpose |
|
||||
| Power ||
|
||||
| Power | |
|
||||
| Pooling | same as onnx pooling |
|
||||
| PRelu | same as onnx PRelu |
|
||||
| Proposal | batch: 1 |
|
||||
| Reduction | output dims <= 4 |
|
||||
| Relu | same as onnx Relu |
|
||||
| Relu6 | same as onnx Clip |
|
||||
| Reorg ||
|
||||
| Reorg | |
|
||||
| Reshape | same as onnx Reshape |
|
||||
| Resize | bilinear; nearest |
|
||||
| Reverse ||
|
||||
| Reverse | |
|
||||
| ROIPooling | same as MaxRoiPool according to https://github.com/twmht/caffe-pva-faster-rcnn |
|
||||
| Scale | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| Scale | same as onnx Mul |
|
||||
| Sigmoid | same as onnx Sigmoid |
|
||||
| Slice | same as onnx Split |
|
||||
| Softmax | same as onnx Softmax |
|
||||
@ -147,19 +173,19 @@ The Pytorch version supported by RKNN Toolkit2 is >1.6.0, models generated by ot
|
||||
The list of Pytorch OPs supported by RKNN Toolkit2 is as follows:
|
||||
|
||||
| **Operators** | **Remarks** |
|
||||
|---------------------------|------------------------------------|
|
||||
| ------------------------- | --------------------------------------------------------------- |
|
||||
| aten::_convolution | same as onnx Conv |
|
||||
| aten::add | same as onnx Add |
|
||||
| aten::avg_pool2d | same as onnx AveragePool |
|
||||
| aten::batch_norm | same as onnx BatchNormalization |
|
||||
| aten::cat | same as onnx Concat |
|
||||
| aten::chunk ||
|
||||
| aten::dropout ||
|
||||
| aten::chunk | |
|
||||
| aten::dropout | |
|
||||
| aten::elu | same as onnx Elu |
|
||||
| aten::flatten ||
|
||||
| aten::flatten | |
|
||||
| aten::hardswish | same as onnx HardSwish |
|
||||
| aten::instance_norm | same as onnx InstanceNormalization |
|
||||
| aten::layer_norm ||
|
||||
| aten::layer_norm | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8192] |
|
||||
| aten::leaky_relu | same as onnx LeakyRelu |
|
||||
| aten::linear | same as onnx Gemm |
|
||||
| aten::matmul | same as onnx MatMul |
|
||||
@ -188,53 +214,53 @@ The pb files (contain OPs belows) generated by TensorFlow version 1.12 - 1.15 fo
|
||||
The list of TensorFlow OPs supported by RKNN Toolkit2 is as follows:
|
||||
|
||||
| **Operators** | **Remarks** |
|
||||
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| --------------------- | ------------------------------------------------------------------------- |
|
||||
| Add | same as onnx Add |
|
||||
| AvgPool | same as onnx AveragePool |
|
||||
| Concat | same as onnx Concat |
|
||||
| Conv2D | same as onnx Conv |
|
||||
| DepthToSpace ||
|
||||
| DepthwiseConv2d | channel:unlimited<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15] |
|
||||
| DepthToSpace | |
|
||||
| DepthwiseConv2d | kernel height/width: [1, 8]<br />kernels: 1<br />others same as onnx Conv |
|
||||
| Div | same as onnx Div |
|
||||
| Dropout ||
|
||||
| Flatten ||
|
||||
| Dropout | |
|
||||
| Flatten | |
|
||||
| LeakyRelu | same as onnx LeakyRelu |
|
||||
| Less | same as onnx Less |
|
||||
| LRN ||
|
||||
| LRN | |
|
||||
| MatMul | |
|
||||
| MaxPool | same as onnx MaxPool |
|
||||
| Mean | output dims <= 4 |
|
||||
| Pad | same as onnx Pad |
|
||||
| Relu | same as onnx Relu |
|
||||
| Reshape ||
|
||||
| ResizeBilinear ||
|
||||
| ResizeNearestNeighbor ||
|
||||
| Sigmoid ||
|
||||
| Slice ||
|
||||
| Softmax ||
|
||||
| Softplus ||
|
||||
| SpaceToDepth ||
|
||||
| Split ||
|
||||
| Squeeze ||
|
||||
| StridedSlice ||
|
||||
| Reshape | |
|
||||
| ResizeBilinear | |
|
||||
| ResizeNearestNeighbor | |
|
||||
| Sigmoid | |
|
||||
| Slice | |
|
||||
| Softmax | |
|
||||
| Softplus | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| SpaceToDepth | |
|
||||
| Split | |
|
||||
| Squeeze | |
|
||||
| StridedSlice | |
|
||||
| Tanh | same as onnx TanH |
|
||||
| Transpose ||
|
||||
| Transpose | |
|
||||
|
||||
## Darknet OPs supported by RKNN Toolkit2
|
||||
The list of Darknet OPs supported by RKNN Toolkit2 is as follows:
|
||||
|
||||
| **Operators** | **Remarks** |
|
||||
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| ----------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| add | same as onnx Add |
|
||||
| batchnormalize | same as onnx BatchNormalization |
|
||||
| concat | same as onnx Concat |
|
||||
| convolutional | same as onnx Conv |
|
||||
| depthwise_convolutional | channel:unlimited<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15] |
|
||||
| depthwise_convolutional | kernel height/width: [1, 8]<br />kernels: 1<br />others same as onnx Conv |
|
||||
| fullconnect | |
|
||||
| leakyrelu | same as onnx LeakyRelu |
|
||||
| mish ||
|
||||
| pooling | **AveragePool**:<br />channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]<br /><br /> **GlobalAveragePool**:<br /> channel: [1, 8192]<br />kernel height/width: [1, 128]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7] <br /> <br /> **MaxPool/GlobalMaxPool**:<br /> channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]<br /><br />MaxPool: <br />auto_pad only support NOTSET,ceil_mode only support 0,unsupport dilations |
|
||||
| route ||
|
||||
| shortcut ||
|
||||
| softmax ||
|
||||
| upsampling ||
|
||||
| mish | channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176] |
|
||||
| pooling | **AveragePool**: same as onnx AveragePool <br /> **GlobalAveragePool**: same as onnx GlobalAveragePool <br /> **MaxPool/GlobalMaxPool**: same as onnx MaxPool/GlobalMaxPool |
|
||||
| route | |
|
||||
| shortcut | |
|
||||
| softmax | |
|
||||
| upsampling | |
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
doc/Rockchip_User_Guide_RKNN_Toolkit2_CN-1.3.0.pdf
Normal file
BIN
doc/Rockchip_User_Guide_RKNN_Toolkit2_CN-1.3.0.pdf
Normal file
Binary file not shown.
Binary file not shown.
BIN
doc/Rockchip_User_Guide_RKNN_Toolkit2_EN-1.3.0.pdf
Normal file
BIN
doc/Rockchip_User_Guide_RKNN_Toolkit2_EN-1.3.0.pdf
Normal file
Binary file not shown.
@ -1,8 +1,32 @@
|
||||
2021-4-22
|
||||
版本: v1.3.0:
|
||||
更新内容:
|
||||
1. 新功能: python3.8/ubuntu20.04 平台支持
|
||||
2. 修复一些已知的bug:
|
||||
1) 修复了一些图优化和量化bug
|
||||
|
||||
2021-4-7
|
||||
版本: v1.2.5:
|
||||
更新内容:
|
||||
1. 新功能: rv1103/rv1109平台的支持.
|
||||
2. 修复一些已知的bug:
|
||||
1) 修复了一些QAT模型转换问题
|
||||
2) 修复了一些图优化bug
|
||||
|
||||
|
||||
2021-1-27
|
||||
版本: v1.2.1-beta:
|
||||
更新内容:
|
||||
1. 新功能: 多batch的NHWC格式输入时,在H维度,有效元素个数与实际内存中的元素个数不一致时,支持H方向实际元素个数按照h_stride设置.
|
||||
2. 修复一些已知的bug:
|
||||
1) LSTM算子内部变量重名的问题.
|
||||
|
||||
|
||||
2021-1-12
|
||||
版本:v1.2.0
|
||||
更新内容:
|
||||
1. 新功能: rk3588平台的支持; rknn模型加密支持; tensorflow/tflite/pytorch量化感知模型支持; 增加了一些新的 op 支持: InstanceNormalization, Swish, Conv1D等(详见 op support list);增加了参数量计算以及算力分析
|
||||
2. examples 更新:增加了从 pytorch 转 onnx 的转换 demo:resnet18_export_onnx ;增加了pytorch量化感知模型的加载demo:resnet18_qat demo;增加了模型加密功能
|
||||
2. examples 更新:增加了从 pytorch 转 onnx 的转换 demo:resnet18_export_onnx ;增加了pytorch量化感知模型的加载demo:resnet18_qat demo;增加了模型加密功能:添加了3588平台 rknn 转换 demo
|
||||
3. 接口更改:移除了 config,load_caffe,load_tensorflow等接口的一些不必要的参数设置,更新了 eval_perf 接口,详细改动见Uer_Guide文档
|
||||
4. 修复一些已知的bug:
|
||||
1) 修复了一些模型无法转换rknn的问题
|
||||
@ -15,5 +15,6 @@ requests==2.21.0
|
||||
opencv-python==4.4.0.46
|
||||
PuLP==2.4
|
||||
scikit_image==0.17.2
|
||||
# if install bfloat16 failed, please install numpy manually first. "pip install numpy==1.16.6"
|
||||
bfloat16==1.1
|
||||
flatbuffers==1.12
|
||||
19
doc/requirements_cp38-1.3.0.txt
Normal file
19
doc/requirements_cp38-1.3.0.txt
Normal file
@ -0,0 +1,19 @@
|
||||
numpy==1.17.3
|
||||
onnx==1.7.0
|
||||
onnxoptimizer==0.1.0
|
||||
onnxruntime==1.6.0
|
||||
tensorflow==2.2.0
|
||||
tensorboard==2.2.2
|
||||
protobuf==3.12.0
|
||||
torch==1.6.0
|
||||
torchvision==0.7.0
|
||||
psutil==5.6.2
|
||||
ruamel.yaml==0.15.81
|
||||
scipy==1.4.1
|
||||
tqdm==4.27.0
|
||||
requests==2.21.0
|
||||
opencv-python==4.4.0.46
|
||||
PuLP==2.4
|
||||
scikit_image==0.17.2
|
||||
# if install bfloat16 failed, please install numpy manually first. "pip install numpy==1.17.3"
|
||||
bfloat16==1.1
|
||||
@ -29,7 +29,7 @@ if __name__ == '__main__':
|
||||
# Pre-process config
|
||||
print('--> Config model')
|
||||
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82],
|
||||
quant_img_RGB2BGR=True, target_platform='rk3566')
|
||||
quant_img_RGB2BGR=True, target_platform='rk3588')
|
||||
print('done')
|
||||
|
||||
# Load model
|
||||
@ -72,14 +72,21 @@ if __name__ == '__main__':
|
||||
# Set inputs
|
||||
img = cv2.imread('./dog_224x224.jpg')
|
||||
|
||||
print('--> List devices')
|
||||
rknn.list_devices()
|
||||
|
||||
# Init runtime environment
|
||||
print('--> Init runtime environment')
|
||||
ret = rknn.init_runtime(target='rk3566', perf_debug=True, eval_mem=True)
|
||||
ret = rknn.init_runtime(target='rk3588', perf_debug=True, eval_mem=True)
|
||||
if ret != 0:
|
||||
print('Init runtime environment failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
print('--> Get sdk version')
|
||||
sdk_version = rknn.get_sdk_version()
|
||||
print(sdk_version)
|
||||
|
||||
# eval perf
|
||||
print('--> Eval perf')
|
||||
rknn.eval_perf(inputs=[img])
|
||||
@ -97,7 +104,7 @@ if __name__ == '__main__':
|
||||
|
||||
# Accuracy analysis
|
||||
print('--> Accuracy analysis')
|
||||
ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot', target='rk3566')
|
||||
ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot', target='rk3588')
|
||||
if ret != 0:
|
||||
print('Accuracy analysis failed!')
|
||||
exit(ret)
|
||||
|
||||
@ -231,7 +231,7 @@ if __name__ == '__main__':
|
||||
|
||||
# pre-process config
|
||||
print('--> Config model')
|
||||
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], output_tensor_type='int8')
|
||||
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]])
|
||||
print('done')
|
||||
|
||||
# Load ONNX model
|
||||
|
||||
27
examples/readme.txt
Normal file
27
examples/readme.txt
Normal file
@ -0,0 +1,27 @@
|
||||
The directory structure of examples is as follows:
|
||||
.
|
||||
├── caffe
|
||||
│ ├── mobilenet_v2 # mobilenet_v2 float model
|
||||
│ └── vgg-ssd # vgg-ssd float model
|
||||
├── onnx
|
||||
│ ├── resnet50v2 # resnet50v2 float model
|
||||
│ └── yolov5 # yolov5 float model
|
||||
├── pytorch
|
||||
│ ├── resnet18 # resnet18 float model
|
||||
│ ├── resnet18_qat # resnet18 QAT model
|
||||
│ └── resnet18_export_onnx # how to export onnx model from pytorch
|
||||
├── tensorflow
|
||||
│ ├── ssd_mobilenet_v1 # ssd_mobilenet_v1 float model
|
||||
│ └── inception_v3_qat # inception_v3 QAT model
|
||||
├── tflite
|
||||
│ ├── mobilenet_v1 # mobilenet_v1 float model
|
||||
│ └── mobilenet_v1_qat # mobilenet_v1 QAT model
|
||||
├── darknet
|
||||
│ └── yolov3_416x416 # yolov3 float model
|
||||
└── functions
|
||||
├── accuracy_analysis # how to use accuracy-analysis function
|
||||
├── batch_size # how to expand batch for use multi-batch function
|
||||
├── multi_input_test # multi-input float model
|
||||
├── hybrid_quant # how to use hybrid-quantization function
|
||||
├── mmse # how to use mmse function
|
||||
└── board_test # how to connect the board for debugging
|
||||
@ -104,7 +104,7 @@ if __name__ == '__main__':
|
||||
|
||||
# Pre-process config
|
||||
print('--> Config model')
|
||||
rknn.config()
|
||||
rknn.config(mean_values=[104, 117, 123], std_values=[128, 128, 128])
|
||||
print('done')
|
||||
|
||||
# Load model
|
||||
|
||||
Binary file not shown.
BIN
packages/rknn_toolkit2-1.3.0_11912b58-cp38-cp38-linux_x86_64.whl
Normal file
BIN
packages/rknn_toolkit2-1.3.0_11912b58-cp38-cp38-linux_x86_64.whl
Normal file
Binary file not shown.
Binary file not shown.
@ -1,6 +0,0 @@
|
||||
2022-01-14
|
||||
版本:v1.2.0
|
||||
1. 新功能:
|
||||
1.1 RKNN模型推理;
|
||||
1.2 SDK版本查询;
|
||||
1.3 模型可运行平台查询。
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
12
rknn_toolkit_lite2/docs/change_log.txt
Normal file
12
rknn_toolkit_lite2/docs/change_log.txt
Normal file
@ -0,0 +1,12 @@
|
||||
2022-04-27
|
||||
版本: v1.3.0
|
||||
1. 功能完善:
|
||||
1.1 完善init_runtime失败的提示信息;
|
||||
1.2 适配1.3.0版本NPU驱动。
|
||||
|
||||
2022-01-14
|
||||
版本:v1.2.0
|
||||
1. 新功能:
|
||||
1.1 RKNN模型推理;
|
||||
1.2 SDK版本查询;
|
||||
1.3 模型可运行平台查询。
|
||||
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 23 KiB |
Binary file not shown.
Binary file not shown.
@ -0,0 +1,2 @@
|
||||
4dff57052f94a9c080774ab0e6af1d56 rknn_toolkit_lite2-1.3.0-cp37-cp37m-linux_aarch64.whl
|
||||
1085cd7ee4bb18ef17b03d66e5428d69 rknn_toolkit_lite2-1.3.0-cp39-cp39-linux_aarch64.whl
|
||||
Loading…
x
Reference in New Issue
Block a user