add rknn-toolkit2-v0.7.0
Change-Id: I77282cfa9113063f946c2a0b40225180b069f6ee
This commit is contained in:
parent
0ece5fece4
commit
a4d3223144
@ -41,8 +41,9 @@ Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 Version
|
|||||||
| BatchNorm |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| BatchNorm |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
| bn (BatchNorm + Scale) |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br /> according to https://github.com/TimoSaemann/caffe-segnet-cudnn5|
|
| bn (BatchNorm + Scale) |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br /> according to https://github.com/TimoSaemann/caffe-segnet-cudnn5|
|
||||||
| BNLL ||
|
| BNLL ||
|
||||||
| Concat |axis: channel (only support channel direction)|
|
| Concat |axis: 1,2,3|
|
||||||
| Convolution |**Conv**: <br />channel:<br /> [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />group: 1, channel / N <br /><br />**Convolution depthwise**: <br />channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
| Convolution |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />group: 1, channel / N <br /><br />|
|
||||||
|
| ConvolutionDepthwise |channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||||
| Crop ||
|
| Crop ||
|
||||||
| Deconvolution |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]|
|
| Deconvolution |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]|
|
||||||
| Dropout ||
|
| Dropout ||
|
||||||
@ -57,6 +58,8 @@ Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 Version
|
|||||||
| Proposal |batch: 1|
|
| Proposal |batch: 1|
|
||||||
| Reduction |output dims <= 4|
|
| Reduction |output dims <= 4|
|
||||||
| Relu |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| Relu |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
|
| Relu6 |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
|
| Reorg ||
|
||||||
| Reshape ||
|
| Reshape ||
|
||||||
| Resize |bilinear; nearest|
|
| Resize |bilinear; nearest|
|
||||||
| Reverse ||
|
| Reverse ||
|
||||||
@ -67,6 +70,7 @@ Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 Version
|
|||||||
| Softmax ||
|
| Softmax ||
|
||||||
| Split ||
|
| Split ||
|
||||||
| TanH |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| TanH |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
|
| Transpose ||
|
||||||
| Upsample |according to https://github.com/SeanQ88/caffe_upsample and https://github.com/TimoSaemann/caffe-segnet-cudnn5|
|
| Upsample |according to https://github.com/SeanQ88/caffe_upsample and https://github.com/TimoSaemann/caffe-segnet-cudnn5|
|
||||||
|
|
||||||
## ONNX OPs supported by RKNN Toolkit2
|
## ONNX OPs supported by RKNN Toolkit2
|
||||||
@ -80,7 +84,7 @@ The list of ONNX OPs supported by RKNN Toolkit2 Version 0.6.0 is as follows:
|
|||||||
| AveragePool |channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
| AveragePool |channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
||||||
| BatchNormalization |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| BatchNormalization |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
| Clip |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| Clip |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
| Concat |axis: 1 (only support channel direction)|
|
| Concat |axis: 1,2,3|
|
||||||
| Conv |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
| Conv |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||||
| ConvTranspose |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
| ConvTranspose |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||||
| DepthToSpace ||
|
| DepthToSpace ||
|
||||||
@ -128,7 +132,7 @@ The list of Pytorch OPs supported by RKNN Toolkit2 Version 0.6.0 is as follows:
|
|||||||
| aten::add |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
| aten::add |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||||
| aten::avg_pool2d |channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
| aten::avg_pool2d |channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
||||||
| aten::batch_norm |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| aten::batch_norm |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
| aten::cat |axis: 1 (only support channel direction)|
|
| aten::cat |axis: 1,2,3|
|
||||||
| aten::dropout ||
|
| aten::dropout ||
|
||||||
| aten::flatten ||
|
| aten::flatten ||
|
||||||
| aten::leaky_relu |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
| aten::leaky_relu |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
@ -158,7 +162,7 @@ The list of TensorFlow OPs supported by RKNN Toolkit2 is as follows:
|
|||||||
| **Operators** | **Remarks** |
|
| **Operators** | **Remarks** |
|
||||||
| ---------------------------------- | ----------- |
|
| ---------------------------------- | ----------- |
|
||||||
| AvgPool |channel: [1, 8192]<br>kernel height/width: [1, 7]<br>stride height/width: [1, 8]<br>pad left/right/top/bottom: [0, 7]|
|
| AvgPool |channel: [1, 8192]<br>kernel height/width: [1, 7]<br>stride height/width: [1, 8]<br>pad left/right/top/bottom: [0, 7]|
|
||||||
| Concat |axis: 1 (only support channel direction)|
|
| Concat |axis: 1,2,3|
|
||||||
| Conv2D |channel: [1, 8192]<br>kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
| Conv2D |channel: [1, 8192]<br>kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||||
| DepthToSpace ||
|
| DepthToSpace ||
|
||||||
| DepthwiseConv2d |channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
| DepthwiseConv2d |channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||||
@ -198,7 +202,7 @@ The list of TensorFlow Lite OPs supported by RKNN Toolkit2 is as follows:
|
|||||||
|---| ----------- |
|
|---| ----------- |
|
||||||
|ADD|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
|ADD|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||||
|AVERAGE_POOL_2D|channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
|AVERAGE_POOL_2D|channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
||||||
|CONCATENATION|axis: 1 (only support channel direction)|
|
|CONCATENATION|axis: 1,2,3|
|
||||||
|CONV_2D_TRANSPOSE|channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
|CONV_2D_TRANSPOSE|channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||||
|CONV_2D|channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
|CONV_2D|channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||||
|DEPTH_TO_SPACE||
|
|DEPTH_TO_SPACE||
|
||||||
@ -233,7 +237,7 @@ The list of Darknet OPs supported by RKNN Toolkit2 Version 0.6.0 is as follows:
|
|||||||
|---| ----------- |
|
|---| ----------- |
|
||||||
|add|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
|add|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||||
|batchnormalize|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
|batchnormalize|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||||
|concat|axis: 1 (only support channel direction)|
|
|concat|axis: 1,2,3|
|
||||||
|convolutional|hannel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
|convolutional|hannel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||||
|depthwise_convolutional|channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
|depthwise_convolutional|channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||||
|fullconnect|channel: [1, 8192]|
|
|fullconnect|channel: [1, 8192]|
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,3 +1,14 @@
|
|||||||
|
2021-4-2
|
||||||
|
版本:v0.7.0
|
||||||
|
更新内容:
|
||||||
|
1. 新功能: 新的量化算法支持(mmse), 添加支持tensorflow的预量化模型导入
|
||||||
|
2. 添加了Caffe新OP支持:relu6/ConvolutionDepthwise/Transpose/reorg
|
||||||
|
3. 修复一些已知的bug:
|
||||||
|
1) 增加concat的非channel维度,非4维输入的支持
|
||||||
|
2) 修复了第一层是scale的预处理bug
|
||||||
|
3)更新了onnxruntime==1.7.0的版本
|
||||||
|
4. 更新了文档,更新了OP支持列表
|
||||||
|
|
||||||
2021-3-1
|
2021-3-1
|
||||||
版本:v0.6.0
|
版本:v0.6.0
|
||||||
更新内容:
|
更新内容:
|
||||||
@ -1,7 +1,7 @@
|
|||||||
numpy==1.16.6
|
numpy==1.16.6
|
||||||
onnx==1.7.0
|
onnx==1.7.0
|
||||||
onnxoptimizer==0.1.0
|
onnxoptimizer==0.1.0
|
||||||
onnxruntime==1.5.2
|
onnxruntime==1.7.0
|
||||||
tensorflow==1.14.0
|
tensorflow==1.14.0
|
||||||
tensorboard==1.14.0
|
tensorboard==1.14.0
|
||||||
protobuf==3.12.0
|
protobuf==3.12.0
|
||||||
@ -14,4 +14,5 @@ scipy==1.2.1
|
|||||||
tqdm==4.27.0
|
tqdm==4.27.0
|
||||||
requests==2.21.0
|
requests==2.21.0
|
||||||
tflite==2.3.0
|
tflite==2.3.0
|
||||||
opencv-python==4.4.0.46
|
opencv-python==4.4.0.46
|
||||||
|
PuLP==2.4
|
||||||
@ -0,0 +1,3 @@
|
|||||||
|
This demo shows how to load a quantized model.
|
||||||
|
Download address of inception_v3_quant_frozen.pb:
|
||||||
|
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
|
||||||
BIN
examples/common_function_demos/load_quantized_model/goldfish_299x299.jpg
Executable file
BIN
examples/common_function_demos/load_quantized_model/goldfish_299x299.jpg
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 85 KiB |
164
examples/common_function_demos/load_quantized_model/test.py
Executable file
164
examples/common_function_demos/load_quantized_model/test.py
Executable file
@ -0,0 +1,164 @@
|
|||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
import urllib
|
||||||
|
import tarfile
|
||||||
|
import shutil
|
||||||
|
import traceback
|
||||||
|
import time
|
||||||
|
import sys
|
||||||
|
from rknn.api import RKNN
|
||||||
|
|
||||||
|
PB_FILE = './inception_v3_quant_frozen.pb'
|
||||||
|
RKNN_MODEL_PATH = './inception_v3_quant_frozen.rknn'
|
||||||
|
INPUTS = ['input']
|
||||||
|
OUTPUTS = ['InceptionV3/Logits/SpatialSqueeze']
|
||||||
|
IMG_PATH = './goldfish_299x299.jpg'
|
||||||
|
INPUT_SIZE = 299
|
||||||
|
|
||||||
|
def show_outputs(outputs):
|
||||||
|
output = outputs[0][0]
|
||||||
|
output_sorted = sorted(output, reverse=True)
|
||||||
|
top5_str = 'inception_v3\n-----TOP 5-----\n'
|
||||||
|
for i in range(5):
|
||||||
|
value = output_sorted[i]
|
||||||
|
index = np.where(output == value)
|
||||||
|
for j in range(len(index)):
|
||||||
|
if (i + j) >= 5:
|
||||||
|
break
|
||||||
|
if value > 0:
|
||||||
|
topi = '{}: {}\n'.format(index[j], value)
|
||||||
|
else:
|
||||||
|
topi = '-1: 0.0\n'
|
||||||
|
top5_str += topi
|
||||||
|
print(top5_str)
|
||||||
|
|
||||||
|
|
||||||
|
def readable_speed(speed):
|
||||||
|
speed_bytes = float(speed)
|
||||||
|
speed_kbytes = speed_bytes / 1024
|
||||||
|
if speed_kbytes > 1024:
|
||||||
|
speed_mbytes = speed_kbytes / 1024
|
||||||
|
if speed_mbytes > 1024:
|
||||||
|
speed_gbytes = speed_mbytes / 1024
|
||||||
|
return "{:.2f} GB/s".format(speed_gbytes)
|
||||||
|
else:
|
||||||
|
return "{:.2f} MB/s".format(speed_mbytes)
|
||||||
|
else:
|
||||||
|
return "{:.2f} KB/s".format(speed_kbytes)
|
||||||
|
|
||||||
|
|
||||||
|
def show_progress(blocknum, blocksize, totalsize):
|
||||||
|
speed = (blocknum * blocksize) / (time.time() - start_time)
|
||||||
|
speed_str = " Speed: {}".format(readable_speed(speed))
|
||||||
|
recv_size = blocknum * blocksize
|
||||||
|
|
||||||
|
f = sys.stdout
|
||||||
|
progress = (recv_size / totalsize)
|
||||||
|
progress_str = "{:.2f}%".format(progress * 100)
|
||||||
|
n = round(progress * 50)
|
||||||
|
s = ('#' * n).ljust(50, '-')
|
||||||
|
f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
|
||||||
|
f.flush()
|
||||||
|
f.write('\r\n')
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
# Create RKNN object
|
||||||
|
rknn = RKNN()
|
||||||
|
|
||||||
|
# If inception_v3_quant_frozen.pb does not exist, download it.
|
||||||
|
# Download address:
|
||||||
|
# https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
|
||||||
|
if not os.path.exists(PB_FILE):
|
||||||
|
print('--> Download {}'.format(PB_FILE))
|
||||||
|
url = 'https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz'
|
||||||
|
download_file = 'inception_v3_quant.tgz'
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
urllib.request.urlretrieve(url, download_file, show_progress)
|
||||||
|
except:
|
||||||
|
print('Download {} failed.'.format(download_file))
|
||||||
|
print(traceback.format_exc())
|
||||||
|
exit(-1)
|
||||||
|
try:
|
||||||
|
tar = tarfile.open(download_file)
|
||||||
|
target_dir = os.path.splitext(download_file)[0]
|
||||||
|
if os.path.isdir(target_dir):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
os.mkdir(target_dir)
|
||||||
|
tar.extractall(target_dir)
|
||||||
|
tar.close()
|
||||||
|
except:
|
||||||
|
print('Extract {} failed.'.format(download_file))
|
||||||
|
exit(-1)
|
||||||
|
pb_file = os.path.join(target_dir, PB_FILE)
|
||||||
|
if os.path.exists(pb_file):
|
||||||
|
shutil.copyfile(pb_file, './inception_v3_quant_frozen.pb')
|
||||||
|
shutil.rmtree(target_dir)
|
||||||
|
os.remove(download_file)
|
||||||
|
print('done')
|
||||||
|
# pre-process config
|
||||||
|
print('--> Config model')
|
||||||
|
rknn.config(reorder_channel=False)
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
# Load tensorflow model
|
||||||
|
print('--> Loading model')
|
||||||
|
ret = rknn.load_tensorflow(tf_pb=PB_FILE,
|
||||||
|
inputs=INPUTS,
|
||||||
|
outputs=OUTPUTS,
|
||||||
|
input_size_list=[[1, INPUT_SIZE, INPUT_SIZE, 3]],
|
||||||
|
predef_file=None,
|
||||||
|
mean_values=[[128]],
|
||||||
|
std_values=[[128]])
|
||||||
|
if ret != 0:
|
||||||
|
print('Load inception_v3_quant_frozen failed!')
|
||||||
|
exit(ret)
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
# Build model
|
||||||
|
print('--> Building model')
|
||||||
|
ret = rknn.build(do_quantization=False)
|
||||||
|
if ret != 0:
|
||||||
|
print('Build inception_v3_quant_frozen.rknn failed!')
|
||||||
|
exit(ret)
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
# Export rknn model
|
||||||
|
print('--> Export RKNN model')
|
||||||
|
ret = rknn.export_rknn(RKNN_MODEL_PATH)
|
||||||
|
if ret != 0:
|
||||||
|
print('Export inception_v3_quant_frozen.rknn failed!')
|
||||||
|
exit(ret)
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
# Set inputs
|
||||||
|
img = cv2.imread(IMG_PATH)
|
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
# init runtime environment
|
||||||
|
print('--> Init runtime environment')
|
||||||
|
ret = rknn.init_runtime()
|
||||||
|
if ret != 0:
|
||||||
|
print('Init runtime environment failed')
|
||||||
|
exit(ret)
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
print('--> Running model')
|
||||||
|
outputs = rknn.inference(inputs=[img])
|
||||||
|
x = outputs[0]
|
||||||
|
output = np.exp(x)/np.sum(np.exp(x))
|
||||||
|
outputs = [output]
|
||||||
|
show_outputs(outputs)
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
# perf
|
||||||
|
print('--> Begin evaluate model performance')
|
||||||
|
perf_results = rknn.eval_perf(inputs=[img])
|
||||||
|
print('done')
|
||||||
|
|
||||||
|
rknn.release()
|
||||||
|
|
||||||
Loading…
x
Reference in New Issue
Block a user