add rknn-toolkit2-v0.7.0
Change-Id: I77282cfa9113063f946c2a0b40225180b069f6ee
This commit is contained in:
parent
0ece5fece4
commit
a4d3223144
@ -41,8 +41,9 @@ Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 Version
|
||||
| BatchNorm |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| bn (BatchNorm + Scale) |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br /> according to https://github.com/TimoSaemann/caffe-segnet-cudnn5|
|
||||
| BNLL ||
|
||||
| Concat |axis: channel (only support channel direction)|
|
||||
| Convolution |**Conv**: <br />channel:<br /> [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />group: 1, channel / N <br /><br />**Convolution depthwise**: <br />channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||
| Concat |axis: 1,2,3|
|
||||
| Convolution |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />group: 1, channel / N <br /><br />|
|
||||
| ConvolutionDepthwise |channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||
| Crop ||
|
||||
| Deconvolution |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]|
|
||||
| Dropout ||
|
||||
@ -57,6 +58,8 @@ Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 Version
|
||||
| Proposal |batch: 1|
|
||||
| Reduction |output dims <= 4|
|
||||
| Relu |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| Relu6 |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| Reorg ||
|
||||
| Reshape ||
|
||||
| Resize |bilinear; nearest|
|
||||
| Reverse ||
|
||||
@ -67,6 +70,7 @@ Based on this protocol, the list of Caffe OPs supported by RKNN Toolkit2 Version
|
||||
| Softmax ||
|
||||
| Split ||
|
||||
| TanH |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| Transpose ||
|
||||
| Upsample |according to https://github.com/SeanQ88/caffe_upsample and https://github.com/TimoSaemann/caffe-segnet-cudnn5|
|
||||
|
||||
## ONNX OPs supported by RKNN Toolkit2
|
||||
@ -80,7 +84,7 @@ The list of ONNX OPs supported by RKNN Toolkit2 Version 0.6.0 is as follows:
|
||||
| AveragePool |channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
||||
| BatchNormalization |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| Clip |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| Concat |axis: 1 (only support channel direction)|
|
||||
| Concat |axis: 1,2,3|
|
||||
| Conv |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||
| ConvTranspose |channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||
| DepthToSpace ||
|
||||
@ -128,7 +132,7 @@ The list of Pytorch OPs supported by RKNN Toolkit2 Version 0.6.0 is as follows:
|
||||
| aten::add |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
| aten::avg_pool2d |channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
||||
| aten::batch_norm |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
| aten::cat |axis: 1 (only support channel direction)|
|
||||
| aten::cat |axis: 1,2,3|
|
||||
| aten::dropout ||
|
||||
| aten::flatten ||
|
||||
| aten::leaky_relu |channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
@ -158,7 +162,7 @@ The list of TensorFlow OPs supported by RKNN Toolkit2 is as follows:
|
||||
| **Operators** | **Remarks** |
|
||||
| ---------------------------------- | ----------- |
|
||||
| AvgPool |channel: [1, 8192]<br>kernel height/width: [1, 7]<br>stride height/width: [1, 8]<br>pad left/right/top/bottom: [0, 7]|
|
||||
| Concat |axis: 1 (only support channel direction)|
|
||||
| Concat |axis: 1,2,3|
|
||||
| Conv2D |channel: [1, 8192]<br>kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||
| DepthToSpace ||
|
||||
| DepthwiseConv2d |channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||
@ -198,7 +202,7 @@ The list of TensorFlow Lite OPs supported by RKNN Toolkit2 is as follows:
|
||||
|---| ----------- |
|
||||
|ADD|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
|AVERAGE_POOL_2D|channel: [1, 8192]<br />kernel height/width: [1, 7]<br />stride height/width: [1, 8]<br />pad left/right/top/bottom: [0, 7]|
|
||||
|CONCATENATION|axis: 1 (only support channel direction)|
|
||||
|CONCATENATION|axis: 1,2,3|
|
||||
|CONV_2D_TRANSPOSE|channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: 2, 4, 8<br />kernels: [1, 8192]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||
|CONV_2D|channel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||
|DEPTH_TO_SPACE||
|
||||
@ -233,7 +237,7 @@ The list of Darknet OPs supported by RKNN Toolkit2 Version 0.6.0 is as follows:
|
||||
|---| ----------- |
|
||||
|add|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]<br />support broadcast rule: per-layer/channel/element |
|
||||
|batchnormalize|channel: [1, 8192]<br />height: [1, 8192]<br />width: [1, 8176]|
|
||||
|concat|axis: 1 (only support channel direction)|
|
||||
|concat|axis: 1,2,3|
|
||||
|convolutional|hannel: [1, 8192]<br />kernel height/width: [1, 31]<br />stride height/width: [1, 7]<br />kernels: [1, 8184]<br />pad left/right/top/bottom: [0, 15]<br />dilation: [1, 31]<br />group: 1, channel / N|
|
||||
|depthwise_convolutional|channel:[1, 8192]<br />kernel height/width: [1, 8]<br />stride height/width: [1, 7]<br />kernels: 1<br />pad left/right/top/bottom: [0, 15]|
|
||||
|fullconnect|channel: [1, 8192]|
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,3 +1,14 @@
|
||||
2021-4-2
|
||||
版本:v0.7.0
|
||||
更新内容:
|
||||
1. 新功能: 新的量化算法支持(mmse), 添加支持tensorflow的预量化模型导入
|
||||
2. 添加了Caffe新OP支持:relu6/ConvolutionDepthwise/Transpose/reorg
|
||||
3. 修复一些已知的bug:
|
||||
1) 增加concat的非channel维度,非4维输入的支持
|
||||
2) 修复了第一层是scale的预处理bug
|
||||
3)更新了onnxruntime==1.7.0的版本
|
||||
4. 更新了文档,更新了OP支持列表
|
||||
|
||||
2021-3-1
|
||||
版本:v0.6.0
|
||||
更新内容:
|
||||
@ -1,7 +1,7 @@
|
||||
numpy==1.16.6
|
||||
onnx==1.7.0
|
||||
onnxoptimizer==0.1.0
|
||||
onnxruntime==1.5.2
|
||||
onnxruntime==1.7.0
|
||||
tensorflow==1.14.0
|
||||
tensorboard==1.14.0
|
||||
protobuf==3.12.0
|
||||
@ -14,4 +14,5 @@ scipy==1.2.1
|
||||
tqdm==4.27.0
|
||||
requests==2.21.0
|
||||
tflite==2.3.0
|
||||
opencv-python==4.4.0.46
|
||||
opencv-python==4.4.0.46
|
||||
PuLP==2.4
|
||||
@ -0,0 +1,3 @@
|
||||
This demo shows how to load a quantized model.
|
||||
Download address of inception_v3_quant_frozen.pb:
|
||||
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
|
||||
BIN
examples/common_function_demos/load_quantized_model/goldfish_299x299.jpg
Executable file
BIN
examples/common_function_demos/load_quantized_model/goldfish_299x299.jpg
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 85 KiB |
164
examples/common_function_demos/load_quantized_model/test.py
Executable file
164
examples/common_function_demos/load_quantized_model/test.py
Executable file
@ -0,0 +1,164 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import urllib
|
||||
import tarfile
|
||||
import shutil
|
||||
import traceback
|
||||
import time
|
||||
import sys
|
||||
from rknn.api import RKNN
|
||||
|
||||
PB_FILE = './inception_v3_quant_frozen.pb'
|
||||
RKNN_MODEL_PATH = './inception_v3_quant_frozen.rknn'
|
||||
INPUTS = ['input']
|
||||
OUTPUTS = ['InceptionV3/Logits/SpatialSqueeze']
|
||||
IMG_PATH = './goldfish_299x299.jpg'
|
||||
INPUT_SIZE = 299
|
||||
|
||||
def show_outputs(outputs):
|
||||
output = outputs[0][0]
|
||||
output_sorted = sorted(output, reverse=True)
|
||||
top5_str = 'inception_v3\n-----TOP 5-----\n'
|
||||
for i in range(5):
|
||||
value = output_sorted[i]
|
||||
index = np.where(output == value)
|
||||
for j in range(len(index)):
|
||||
if (i + j) >= 5:
|
||||
break
|
||||
if value > 0:
|
||||
topi = '{}: {}\n'.format(index[j], value)
|
||||
else:
|
||||
topi = '-1: 0.0\n'
|
||||
top5_str += topi
|
||||
print(top5_str)
|
||||
|
||||
|
||||
def readable_speed(speed):
|
||||
speed_bytes = float(speed)
|
||||
speed_kbytes = speed_bytes / 1024
|
||||
if speed_kbytes > 1024:
|
||||
speed_mbytes = speed_kbytes / 1024
|
||||
if speed_mbytes > 1024:
|
||||
speed_gbytes = speed_mbytes / 1024
|
||||
return "{:.2f} GB/s".format(speed_gbytes)
|
||||
else:
|
||||
return "{:.2f} MB/s".format(speed_mbytes)
|
||||
else:
|
||||
return "{:.2f} KB/s".format(speed_kbytes)
|
||||
|
||||
|
||||
def show_progress(blocknum, blocksize, totalsize):
|
||||
speed = (blocknum * blocksize) / (time.time() - start_time)
|
||||
speed_str = " Speed: {}".format(readable_speed(speed))
|
||||
recv_size = blocknum * blocksize
|
||||
|
||||
f = sys.stdout
|
||||
progress = (recv_size / totalsize)
|
||||
progress_str = "{:.2f}%".format(progress * 100)
|
||||
n = round(progress * 50)
|
||||
s = ('#' * n).ljust(50, '-')
|
||||
f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
|
||||
f.flush()
|
||||
f.write('\r\n')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create RKNN object
|
||||
rknn = RKNN()
|
||||
|
||||
# If inception_v3_quant_frozen.pb does not exist, download it.
|
||||
# Download address:
|
||||
# https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
|
||||
if not os.path.exists(PB_FILE):
|
||||
print('--> Download {}'.format(PB_FILE))
|
||||
url = 'https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz'
|
||||
download_file = 'inception_v3_quant.tgz'
|
||||
try:
|
||||
start_time = time.time()
|
||||
urllib.request.urlretrieve(url, download_file, show_progress)
|
||||
except:
|
||||
print('Download {} failed.'.format(download_file))
|
||||
print(traceback.format_exc())
|
||||
exit(-1)
|
||||
try:
|
||||
tar = tarfile.open(download_file)
|
||||
target_dir = os.path.splitext(download_file)[0]
|
||||
if os.path.isdir(target_dir):
|
||||
pass
|
||||
else:
|
||||
os.mkdir(target_dir)
|
||||
tar.extractall(target_dir)
|
||||
tar.close()
|
||||
except:
|
||||
print('Extract {} failed.'.format(download_file))
|
||||
exit(-1)
|
||||
pb_file = os.path.join(target_dir, PB_FILE)
|
||||
if os.path.exists(pb_file):
|
||||
shutil.copyfile(pb_file, './inception_v3_quant_frozen.pb')
|
||||
shutil.rmtree(target_dir)
|
||||
os.remove(download_file)
|
||||
print('done')
|
||||
# pre-process config
|
||||
print('--> Config model')
|
||||
rknn.config(reorder_channel=False)
|
||||
print('done')
|
||||
|
||||
# Load tensorflow model
|
||||
print('--> Loading model')
|
||||
ret = rknn.load_tensorflow(tf_pb=PB_FILE,
|
||||
inputs=INPUTS,
|
||||
outputs=OUTPUTS,
|
||||
input_size_list=[[1, INPUT_SIZE, INPUT_SIZE, 3]],
|
||||
predef_file=None,
|
||||
mean_values=[[128]],
|
||||
std_values=[[128]])
|
||||
if ret != 0:
|
||||
print('Load inception_v3_quant_frozen failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Build model
|
||||
print('--> Building model')
|
||||
ret = rknn.build(do_quantization=False)
|
||||
if ret != 0:
|
||||
print('Build inception_v3_quant_frozen.rknn failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Export rknn model
|
||||
print('--> Export RKNN model')
|
||||
ret = rknn.export_rknn(RKNN_MODEL_PATH)
|
||||
if ret != 0:
|
||||
print('Export inception_v3_quant_frozen.rknn failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Set inputs
|
||||
img = cv2.imread(IMG_PATH)
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# init runtime environment
|
||||
print('--> Init runtime environment')
|
||||
ret = rknn.init_runtime()
|
||||
if ret != 0:
|
||||
print('Init runtime environment failed')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Inference
|
||||
print('--> Running model')
|
||||
outputs = rknn.inference(inputs=[img])
|
||||
x = outputs[0]
|
||||
output = np.exp(x)/np.sum(np.exp(x))
|
||||
outputs = [output]
|
||||
show_outputs(outputs)
|
||||
print('done')
|
||||
|
||||
# perf
|
||||
print('--> Begin evaluate model performance')
|
||||
perf_results = rknn.eval_perf(inputs=[img])
|
||||
print('done')
|
||||
|
||||
rknn.release()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user