# How to use dynamic shape function ## Model Source The model used in this example come from the following open source projects: https://github.com/shicai/MobileNet-Caffe ### Convert to RKNN model Please refer to the example in the RKNN Toolkit2 project to generate the RKNN model: https://github.com/rockchip-linux/rknn-toolkit2/tree/master/examples/functions/dynamic_shape ## Script Usage *Usage:* ``` python test.py ``` ## Expected Results This example will print the TOP5 labels and corresponding scores of the test image classification results for each different input shape, as follows: ``` model: mobilenet_v2 input shape: 1,3,224,224 W The input[0] need NHWC data format, but NCHW set, the data format and data buffer will be changed to NHWC. -----TOP 5----- [155] score:0.936035 class:"Shih-Tzu" [204] score:0.002516 class:"Lhasa, Lhasa apso" [154] score:0.002172 class:"Pekinese, Pekingese, Peke" [283] score:0.001601 class:"Persian cat" [284] score:0.000286 class:"Siamese cat, Siamese" input shape: 1,3,160,160 W The input[0] need NHWC data format, but NCHW set, the data format and data buffer will be changed to NHWC. -----TOP 5----- [155] score:0.606934 class:"Shih-Tzu" [154] score:0.329834 class:"Pekinese, Pekingese, Peke" [204] score:0.025085 class:"Lhasa, Lhasa apso" [194] score:0.001038 class:"Dandie Dinmont, Dandie Dinmont terrier" [219] score:0.000241 class:"cocker spaniel, English cocker spaniel, cocker" input shape: 1,3,256,256 W The input[0] need NHWC data format, but NCHW set, the data format and data buffer will be changed to NHWC. -----TOP 5----- [155] score:0.927246 class:"Shih-Tzu" [154] score:0.007225 class:"Pekinese, Pekingese, Peke" [204] score:0.004616 class:"Lhasa, Lhasa apso" [193] score:0.000878 class:"Australian terrier" [283] score:0.000482 class:"Persian cat" ``` - Note: Different platforms, different versions of tools and drivers may have slightly different results.