
瑞芯微电子股份有限公司

密级状态：绝密() 秘密() 内部() 公开(√)

RKNN-Toolkit2用户使用指南

（技术部，图形计算平台中心）

文件状态：

[] 正在修改

[√] 正式发布

当前版本： V0.6.0

作 者： HPC

完成日期： 2021-2-24

审 核： 熊伟

完成日期： 2021-2-24

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd

(版本所有,翻版必究)

2

更新记录

版本 修改人 修改日期 修改说明 核定人

V0.5.0 HPC 2020-12-18 初始版本 熊伟

V0.6.0 HPC 2021-2-24

1. 更新混合量化章节

2. 更新 RKNN对象初始化参数

3. 更新 Caffe 加载 API

熊伟

3

1 概述... 1

1.1 主要功能说明.. 1

1.2 适用芯片.. 2

1.3 适用系统.. 2

2 系统依赖说明... 3

3 使用说明... 4

3.1 安装.. 4

3.1.1 通过 pip install命令安装... 4

3.1.2 通过 DOCKER镜像安装... 5

3.2 RKNN-Toolkit2的使用.. 5

3.2.1 场景一：模型运行在模拟器上... 6

3.2.2 场景二：模型运行在与 PC相连的 Rockchip NPU平台上.. 8

3.2.3 场景三：模型运行在 RK356x Linux开发板上.. 10

3.3 混合量化.. 10

3.3.1 混合量化功能用法... 10

3.3.2 混合量化配置文件... 11

3.3.3 混合量化使用流程... 11

3.4 示例.. 13

3.5 API 详细说明.. 15

3.5.1 RKNN初始化及对象释放...15

3.5.2 RKNN模型配置...16

3.5.3 模型加载... 17

3.5.4 构建 RKNN模型...22

3.5.5 导出 RKNN模型...23

4

0：导出成功... 23

3.5.6 加载 RKNN模型...24

3.5.7 初始化运行时环境... 24

3.5.8 模型推理... 25

3.5.9 评估模型性能... 27

3.5.10 获取内存使用情况... 27

3.5.11 查询 SDK版本..27

3.5.12 混合量化... 27

3.5.13 量化精度分析... 29

3.5.14 注册自定义算子... 31

3.5.15 查询模型可运行平台... 31

1

1 概述

1.1 主要功能说明

RKNN-Toolkit2 是为用户提供在 PC、 Rockchip NPU 平台上进行模型转换、推理和性能评估

的开发套件，用户通过该工具提供的 Python接口可以便捷地完成以下功能：

1) 模型转换：支持 Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet、Pytorch 模型转

成 RKNN模型，支持 RKNN模型导入导出，后续能够在 Rockchip NPU平台上加载使用。

2) 量化功能：支持将浮点模型转成量化模型，目前支持的量化方法有非对称量化

（ asymmetric_quantized-8 、 asymmetric_quantized-16 ） ， 并 支 持 混 合 量 化 功 能 。

asymmetric_quantized-16和混合量化目前暂不支持。

3) 模型推理：能够在 PC上模拟 Rockchip NPU 运行 RKNN模型并获取推理结果；也可以将

RKNN模型分发到指定的 NPU设备上进行推理。

4) 性能评估：可以将 RKNN模型分发到指定 NPU 设备上运行，以评估模型在实际设备上运

行时的性能。 目前暂不支持。

5) 内存评估：评估模型运行时对系统和 NPU内存的消耗情况。使用该功能时，必须将 RKNN

模型分发到 NPU设备中运行，并调用相关接口获取内存使用信息。目前暂不支持。

6) 量化精度分析：该功能将给出模型量化前后每一层推理结果的余弦距离，以分析量化误差

是如何出现的，为提高量化模型的精度提供思路。

注：部分功能受限于对操作系统或芯片平台的依赖，在某些操作系统或平台上无法使用。各

操作系统（平台）的功能支持列表如下：

Ubuntu 18.04 Windows 7/10 Debian 9/10

(aarch64)

MacOS

Mojave /

Catalina

模型转换 支持

2

量化/混合量化 支持

模型推理 支持

性能评估

内存评估

多输入 支持

批量推理

设备查询

SDK版本查询

量化精度分析 支持

可视化功能

模型优化开关 支持

1.2 适用芯片

RKNN-Toolkit2支持芯片的型号如下：

 RK3566

 RK3568

1.3 适用系统

RKNN-Toolkit2是一个跨平台的开发套件，已支持的操作系统如下：

 Ubuntu: 18.04（x64）及以上

3

2 系统依赖说明

使用本开发套件时需要满足以下运行环境要求：

表 1 运行环境

操作系统版本 Ubuntu18.04（x64）及以上

Python版本 3.6

Python库依赖 numpy==1.16.6

onnx==1.7.0

onnxoptimizer==0.1.0

onnxruntime==1.5.2

tensorflow==1.14.0

tensorboard==1.14.0

protobuf==3.12.0

torch==1.6.0

torchvision==0.7.0

mxnet==1.7.0

psutil==5.6.2

ruamel.yaml==0.15.81

scipy==1.2.1

tqdm==4.27.0

requests==2.21.0

tflite==2.3.0

opencv-python==4.4.0.46

注：

1. 本文档主要以 Ubuntu 18.04 / Python3.6 为例进行说明。其他操作系统请参考

《Rockchip_Quick_Start_RKNN_Toolkit2_CN.pdf》。

4

3 使用说明

3.1 安装

目前提供两种方式安装 RKNN-Toolkit2：一是通过 Python 包安装与管理工具 pip 进行安装；

二是运行带完整 RKNN-Toolkit2工具包的 docker镜像。下面分别介绍这两种安装方式的具体步骤。

3.1.1 通过 pip install命令安装

1. 创建 virtualenv 环境（如果系统中同时有多个版本的 Python 环境，建议使用 virtualenv 管

理 Python环境）

sudo apt install virtualenv
sudo apt-get install python3 python3-dev python3-pip
sudo apt-get install libxslt1-dev zlib1g zlib1g-dev libglib2.0-0 \
libsm6 libgl1-mesa-glx libprotobuf-dev gcc

virtualenv -p /usr/bin/python3 venv
source venv/bin/activate

2. 安装依赖库：

pip3 install -r doc/requirements.txt

注：RKNN-Toolkit2 本身并不依赖 opencv-python，但是在 example 中的示例都会用到这个库

来读取图片，所以这里将该库也一并安装了。

3. 安装 RKNN-Toolkit2

pip install package/rknn_toolkit2*.whl

请根据不同的 python版本及处理器架构，选择不同的安装包文件（位于 package/目录）：

 Python3.6 for x86_64：rknn_toolkit2-0.6.0-cp36-cp36m-linux_x86_64.whl

5

3.1.2 通过 DOCKER镜像安装

在 docker文件夹下提供了一个已打包所有开发环境的 Docker镜像，用户只需要加载该镜像即

可直接上手使用 RKNN-Toolkit2，使用方法如下：

1、安装 Docker

请根据官方手册安装 Docker（https://docs.docker.com/install/linux/docker-ce/ubuntu/）。

2、加载镜像

执行以下命令加载镜像：

docker load --input rknn-toolkit2-0.6.0-docker.tar.gz

加载成功后，执行“docker images”命令能够看到 rknn-toolkit2的镜像，如下所示：

REPOSITORY TAG IMAGE ID CREATED SIZE
rknn-toolkit2 0.6.0 4f6bae6686d8 1 hours ago 4.13GB

3、运行镜像

执行以下命令运行 docker镜像，运行后将进入镜像的 bash环境。

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit2:0.6.0 /bin/bash

如果想将自己代码映射进去可以加上“-v <host src folder>:<image dst folder>”参数，例如:

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v /home/rk/test:/test
rknn-toolkit2:0.6.0 /bin/bash

4、运行 demo

cd /example/tflite/mobilenet_v1
python test.py

3.2 RKNN-Toolkit2的使用

接下来将详细给出各使用场景下 RKNN Toolkit2的使用流程。

https://docs.docker.com/install/linux/docker-ce/ubuntu/

6

3.2.1 场景一：模型运行在模拟器上

这种场景下，RKNN Toolkit2运行在 PC上，通过模拟器运行模型，以实现相应功能。

根据模型类型的不同，这个场景又可以区分为两个子场景：一是模型为非 RKNN 模型，即

Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet、Pytorch等模型；二是 RKNN模型，Rockchip

的专有模型，文件后缀为“rknn”。

3.2.1.1 运行非 RKNN模型

运行非 RKNN 模型与 RKNN 模型的最大区别在于，进行模型推理或模型性能/内存评估前，

需要先将非 RKNN模型转成 RKNN模型。该场景下 RKNN Toolkit2的完整使用流程如下图所示：

7

开始

创建RKNN对象，以初始化RKNN SDK环境

调用config接口设置模型的预处理参数

调用load_caffe、load_tensorflow、
load_tflite、load_onnx、

load_darknet、load_pytorch、
load_mxnet接口导入原始的Caffe、

TensorFlow、TensorFlow Lite、ONNX或
Darknet、Pytorch、MXNet模型

调用build接口构建RKNN模型

调用inference接口对输入
进行推理，获取推理结果

调用eval_perf接口对模型
性能进行评估，获取模型整
体耗时及每一层的耗时情况

调用init_runtime接
口初始化运行时环境

结束

调用release接口释放RKNN对象

调用eval_memory接口获
取模型在硬件平台上运行

时的内存使用情况

调用export_rknn接口
导出RKNN模型

图 3-2-1-1-1 PC 上运行非 RKNN模型时工具的使用流程

注：

1、以上步骤请按顺序执行。

2、蓝色框标注的步骤导出的 RKNN模型可以通过 load_rknn接口导入并使用。

3、红色框标注的模型推理、性能评估和内存评估的步骤先后顺序不固定，根据实际使用情况

决定。性能评估和内存评估目前暂不支持。

4、只有当目标平台是 Rockchip NPU 时，我们才可以调用 inference / eval_perf / eval_memory

接口获取内存使用情况。目前暂不支持。

8

3.2.2 场景二：模型运行在与 PC相连的 Rockchip NPU平台上

目前该功能暂不支持。

RKNN Toolkit2目前支持的 Rockchip NPU平台包括 RK3566, RK3568。

这种场景下，RKNN Toolkit2运行在 PC 上，通过 PC的 USB 连接 NPU设备。RKNN Toolkit2

将 RKNN模型传到 NPU 设备上运行，再从 NPU设备上获取推理结果、性能信息等。

首先，需要完成以下两个步骤：

1、确保开发板的 USB OTG连接到 PC，并且正确识别到设备，即在 PC上调用 RKNN-Toolkit2

的 list_devices接口可查询到相应的设备，关于该接口的使用方法，参见 3.5.15章节。

2、调用 init_runtime接口初始化运行环境时需要指定 target参数和 device_id参数。其中 target

参数表明硬件类型，可选值为“rk3566”、“rk3568”。当 PC 连接多个设备时，还需要

指定 device_id参数，即设备编号，设备编号也可通过 list_devices接口查询，示例如下：

all device(s) with adb mode:
[]
all device(s) with ntb mode:
['TB-RK1808S0', '515e9b401c060c0b']

初始化运行时环境代码示例如下：

RK3566
ret = init_runtime(target='rk3566', device_id='VGEJY9PW7T')

RK3568
ret = init_runtime(target='rk3568', device_id='515e9b401c060c0b')

3.2.2.1 运行非 RKNN模型

当模型为非 RKNN 模型（Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet、Pytorch 等

模型）时，RKNN-Toolkit2工具的使用流程及注意事项同场景一里的子场景一（见 3.2.1.1章节）。

9

3.2.2.2 运行 RKNN模型

运行 RKNN模型时，用户不需要设置模型预处理参数，也不需要构建 RKNN模型，其使用流

程如下图所示：

调用load_rknn接口导入RKNN模型

调用init_runtime接
口初始化运行时环境

开始

创建RKNN对象，以初始化RKNN SDK环境

结束

调用inference接口对输入
进行推理，获取推理结果

调用eval_perf接口对模型性
能进行评估，获取模型整体
耗时及每一层的耗时情况

调用release接口释放RKNN对象

调用eval_memory接口获
取模型在硬件平台上运行

时的内存使用情况

图 3-2-1-2-1 PC上运行 RKNN模型时工具的使用流程

注：

1、以上步骤请按顺序执行。

2、红色框标注的模型推理、性能评估和内存评估的步骤先后顺序不固定，根据实际使用情况

决定。

3、调用 inference / eval_perf / eval_memory 接口获取内存使用情况时，模型必须运行在硬件平

台上。

4、通过 load_rknn 导入的方式仅用于硬件平台相关功能的使用，无法使用如精度分析

accuracy_analysis等功能。

10

3.2.3 场景三：模型运行在 RK356x Linux开发板上

目前该功能暂不支持。

这种场景下，RKNN-Toolkit2直接安装在 RK356x Linux系统里。构建或导入的 RKNN模型直

接在 RK356x上运行，以获取模型实际的推理结果或性能信息。

对于 RK356x 开发板，RKNN-Toolkit2 工具的使用流程取决于模型种类，如果模型类型是非

RKNN模型，则使用流程同场景一中的子场景一（见 3.2.1.1 章节）；否则使用流程同子场景二（见

3.2.2.2章节）。

3.3 混合量化

目前该功能暂不支持。

RKNN-Toolkit2提供的量化功能可以在提高模型性能的基础上尽量少地降低模型精度，但是不

排除某些特殊模型在量化后出现精度下降较多的情况。为了让用户能够在性能和精度之间做更好

的平衡，RKNN-Toolkit2引入了混合量化功能，用户可以自己决定哪些层做量化还是不做量化，量

化时候的参数也可以根据用户自己的经验进行修改。

注：

1. examples/common_function_demos目录下提供了一个混合量化的例子 hybrid_quantization，

可以参考该例子进行混合量化的实践。

3.3.1 混合量化功能用法

目前混合量化功能支持如下用法：

1. 将指定的量化层改成非量化层（如用 float16 进行计算），这种方式可能可以提高精度，

但会损失一定的性能。

11

3.3.2 混合量化配置文件

在使用混合量化功能时，第一步是生成一个混合量化配置文件，本节对该配置文件进行简要

介绍。

当我们调用混合量化接口 hybrid_quantization_step1 后，会在当前目录下生成一个

{model_name}.quantization.cfg配置文件。配置文件格式如下：

custom_quantize_layers: {}
quantize_parameters:

FeatureExtractor/MobilenetV2/Conv/BatchNorm/batchnorm/add_1:0:
qtype: asymmetric_quantized
qmethod: layer
dtype: int8
min:
- 0.0
max:
- 6.0
scale:
- 0.023529411764705882
zero_point:
- -128
ori_min:
- -13.971162796020508
ori_max:
- 22.79466438293457

......

配置文件正文第一行是一个自定义量化操作数的字典，将操作数名和相应的量化类型（可选

值为 float16 / int16）添加到这儿。

接着是模型中每个操作数的量化参数，每一个操作数都是一个字典。每个字典的 key 即

tensor_name，字典的 value 即量化参数，如果没有经过量化，则 dtype 值为 float16。

3.3.3 混合量化使用流程

使用混合量化功能时，可以分四步进行。

第一步，加载原始模型，生成量化配置文件和模型结构文件和模型配置文件。具体的接口调

用流程如下：

12

开始

创建 RKNN对象，以初始化 RKNN环境

调用 config接口设置模型的预处理参数

调用 load_caffe、load_tensorflow、load_tflite、

load_onnx、load_darknet、load_pytorch、

load_mxnet接口导入原始 Caffe、

TensorFlow、Tensorflow Lite、ONNX、

Darknet、Pytorch、MXNet模型

调用 hybrid_quantization_step1接口生成配

置文件（{model_name}.quantization.cfg）,

临时模型文件（{model_name}.model），数

据文件（{model_name}.data）

调用 release接口释放 RKNN对象

结束

图 3-3-3-1 混合量化第一步接口调用流程

第二步，修改第一步生成的量化配置文件。

 如果是将某些量化层改成非量化层，则找到不要量化的层的输出操作数（如果该层的输

出操作数有多个，设置第一个或任意一个即可），将这些操作数加到 custom_quantize_layers

字典中，值为 float16。

第三步，生成 RKNN模型。具体的接口调用流程如下：

13

开始

创建RKNN对象，以初始化RKNN SDK环境

调用config接口设置模型的预处理参数

调用hybrid_quantization_step2接口构
建混合量化RKNN模型

调用release接口释放RKNN对象

结束

调用export_rknn接口导出RKNN模型

图 3-3-3-2 混合量化第三步接口调用流程

第四步，使用上一步生成的 RKNN模型进行推理。

3.4 示例

以下是加载 TensorFlow Lite 模型的示例代码（详细参见 example/tflite/mobilenet_v1 目录），

如果在 PC上执行这个例子，RKNN模型将在模拟器上运行：

import numpy as np
import cv2
from rknn.api import RKNN

def show_outputs(outputs):
output = outputs[0][0]
output_sorted = sorted(output, reverse=True)
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
for i in range(5):

value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):

14

if (i + j) >= 5:
break

if value > 0:
topi = '{}: {}\n'.format(index[j], value)

else:
topi = '-1: 0.0\n'

top5_str += topi
print(top5_str)

if __name__ == '__main__':

Create RKNN object
rknn = RKNN()

pre-process config
print('--> config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128],

reorder_channel=False)
print('done')

Load tensorflow model
print('--> Loading model')
ret = rknn.load_tflite(model='mobilenet_v1_1.0_224.tflite')
if ret != 0:

print('Load mobilenet_v1 failed!')
exit(ret)

print('done')

Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:

print('Build mobilenet_v1 failed!')
exit(ret)

print('done')

Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn('./mobilenet_v1.rknn')
if ret != 0:

print('Export mobilenet_v1.rknn failed!')
exit(ret)

print('done')

Set inputs
img = cv2.imread('./dog_224x224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)

15

init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:

print('Init runtime environment failed')
exit(ret)

print('done')

Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
print('done')

rknn.release()

其中 dataset.txt 是一个包含测试图片路径的文本文件，例如我们在 example/tflite/mobilent_v1

目录下有一张 dog_224x224.jpg的图片，那么对应的 dataset.txt内容如下

dog_224x224.jpg

demo运行模型预测时输出如下结果：

-----TOP 5-----
[156]: 0.8544921875
[155]: 0.080322265625
[205]: 0.0129241943359375
[284]: 0.0084075927734375
[194]: 0.0025787353515625

3.5 API详细说明

3.5.1 RKNN初始化及对象释放

在使用 RKNN Toolkit2的所有 API 接口时，都需要先调用 RKNN()方法初始化一个 RKNN 对

象，并在用完后调用该对象的 release()方法将对象释放掉。

初始化 RKNN对象时，可以设置 verbose和 verbose_file参数，以打印详细的日志信息。其中

verbose参数指定是否要在屏幕上打印详细日志信息；如果设置了 verbose_file 参数，且 verbose参

数值为 True，日志信息还将写到这个参数指定的文件中。模型转换过程中还支持 verbose 参数值为”

INFO”，会将模型解析过程中的所有日志输出到屏幕，帮助排查哪一层解析失败，方便问题定位。

16

举例如下：

将详细的日志信息输出到屏幕，并写到 mobilenet_build.log文件中

rknn = RKNN(verbose=True, verbose_file='./mobilenet_build.log')
只在屏幕打印详细的日志信息

rknn = RKNN(verbose=True)
…

rknn.release()

3.5.2 RKNN模型配置

在构建 RKNN模型之前，需要先对模型进行通道均值、通道顺序、量化类型等的配置，这可

以通过 config接口完成。

API config

描述 设置模型参数

参数 batch_size：批处理大小，默认值为 100。量化时将根据该参数决定每一批次喂的数

据量，以校正量化结果。如果 dataset 中的数据量小于 100，则该参数值将自动调整

为 dataset中的数据量。

mean_values：输入的均值。参数格式是一个列表，列表中包含一个或多个均值子列

表，多输入模型对应多个子列表，每个子列表的长度与该输入的通道数一致，形如

[[128,128,128]]，表示一个输入的三个通道的值减去 128。如果 reorder_channel 设置

成 True，则优先做通道调整，再做减均值。

std_values：输入的归一化值。参数格式是一个列表，列表中包含一个或多个归一化

值子列表，多输入模型对应多个子列表，每个子列表的长度与该输入的通道数一致，

形如[[128,128,128]]，表示设置一个输入的三个通道的值减去均值后再除以 128。如

果 reorder_channel设置成 True，则优先做通道调整，再减均值和除以归一化值。

epochs：量化时的迭代次数，每迭代一次，就选择 batch_size 指定数量的图片进行量

化校正。默认值为-1，此时会根据 dataset 中的图片数量自动计算迭代次数以最大化

利用数据集中的数据。目前暂不支持。

reorder_channel：表示是否需要对图像通道顺序进行调整。False 表示按照输入的通道

17

顺序来推理，比如图片输入时是 RGB，那推理的时候就根据 RGB顺序传给输入层；

True 表示会对输入做通道转换，比如输入时通道顺序是 RGB，推理时会将其转成

BGR，再传给输入层，同样的，输入时通道的顺序为 BGR 的话，会被转成 RGB 后

再传给输入层。如果有多个输入，则用列表包含起来，如[True, True, False]。

quantized_dtype：量化类型，目前支持的量化类型有 asymmetric_quantized-8、

asymmetric_quantized-16，默认值为 asymmetric_quantized-8。asymmetric_quantized-16

暂不支持。

quantized_algorithm:计算每一层的量化参数时采用的量化算法，目前支持的量化算法

有：normal，mmse，默认值为 normal。mmse暂不支持。

quantized_method：目前支持 layer或者 channel，即每层只有一套量化参数或者每个

通道都有自己的一套量化参数，通常情况下 channel 会比 layer 精度更高，默认值为

layer。channel暂不支持。

optimization_level：模型优化等级。通过修改模型优化等级，可以关掉部分或全部模

型转换过程中使用到的优化规则。该参数的默认值为 3，打开所有优化选项。值为 2

或 1时关闭一部分可能会对部分模型精度产生影响的优化选项，值为 0时关闭所有

优化选项。

target_platform: 指定 RKNN 模型是基于哪个目标芯片平台生成的。目前支持

RK3566、RK3568。该参数的值大小写不敏感。

返回值 无

举例如下：

model config
rknn.config(mean_values=[[103.94, 116.78, 123.68]],

std_values=[[58.82, 58.82, 58.82]],
reorder_channel=True,
target_platform='rk3566')

3.5.3 模型加载

RKNN-Toolkit2 目前支持 Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet、Pytorch 七

18

种非 RKNN模型，它们在加载时调用的接口不同，下面详细说明这七种模型的加载接口。

3.5.3.1 Caffe模型加载接口

API load_caffe

描述 加载 caffe模型

参数 model：caffe模型文件（.prototxt后缀文件）所在路径。

proto：caffe模型的格式（可选值为'caffe'或'lstm_caffe'）。为了支持 RNN模型，增加

了相关网络层的支持，此时需要设置 caffe格式为'lstm_caffe'。'lstm_caffe'暂不支持。

blobs：caffe模型的二进制数据文件（.caffemodel后缀文件）所在路径。该参数值可

以为 None，RKNN Toolkit2将随机生成权重等参数。

inputname: caffe 模型存在多输入时，可以通过该参数指定输入层名的顺序，形如

['input1','input2','input3']，注意名字需要与模型输入名一致；也可不设定，按 caffe模

型文件（.prototxt后缀文件）自动给定。

返回值 0：导入成功

-1：导入失败

举例如下：

从当前路径加载 mobilenet_v2模型

ret = rknn.load_caffe(model='./mobilenet_v2.prototxt',
proto='caffe',
blobs='./mobilenet_v2.caffemodel'，
inputname=['input1'])

3.5.3.2 TensorFlow模型加载接口

API load_tensorflow

描述 加载 TensorFlow模型

参数 tf_pb：TensorFlow模型文件（.pb 后缀）所在路径。

inputs：模型输入节点，支持多个输入节点。所有输入节点名放在一个列表中。

19

input_size_list：每个输入节点对应的图片的尺寸和通道数。如示例中的 mobilenet-v1

模型，其输入节点对应的输入尺寸是[[1, 224, 224, 3]]。

outputs：模型的输出节点，支持多个输出节点。所有输出节点名放在一个列表中。

predef_file：为了支持一些控制逻辑，需要提供一个 npz 格式的预定义文件。可以通

过以下方法生成预定义文件：np.savez('prd.npz', [placeholder name]=prd_value)。如果

“placeholder name”中包含'/'，请用'#'替换。该接口暂不支持。

返回值 0：导入成功

-1：导入失败

举例如下：

从当前目录加载 ssd_mobilenet_v1_coco_2017_11_17模型

ret = rknn.load_tensorflow(
tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',
inputs=['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0

/BatchNorm/batchnorm/mul_1'],
outputs=['concat', 'concat_1'],
input_size_list=[[1, 300, 300, 3]])

3.5.3.3 TensorFlow Lite模型加载接口

API load_tflite

描述 加载 TensorFlow Lite模型。

参数 model：TensorFlow Lite 模型文件（.tflite后缀）所在路径

返回值 0：导入成功

-1：导入失败

举例如下：

从当前目录加载 mobilenet_v1模型

ret = rknn.load_tflite(model = './mobilenet_v1.tflite')

20

3.5.3.4 ONNX模型加载

API load_onnx

描述 加载 ONNX模型

参数 model：ONNX模型文件（.onnx后缀）所在路径。

返回值 0：导入成功

-1：导入失败

举例如下：

从当前目录加载 arcface模型

ret = rknn.load_onnx(model = './arcface.onnx')

3.5.3.5 Darknet模型加载接口

API load_darknet

描述 加载 Darknet模型

参数 model：Darknet模型文件（.cfg 后缀）所在路径。

weight：权重文件（.weights后缀）所在路径

返回值 0：导入成功

-1：导入失败

举例如下：

从当前目录加载 yolov3-tiny模型

ret = rknn.load_darknet(model = './yolov3-tiny.cfg',
weight='./yolov3.weights')

3.5.3.6 Pytorch模型加载接口

API load_pytorch

描述 加载 Pytorch模型

21

参数 model：Pytorch 模型文件（.pt后缀）所在路径，而且需要是 torchscript格式的模型。

必填参数。

input_size_list ： 每 个 输 入 节 点 对 应 的 图 片 的 尺 寸 和 通 道 数 。 例 如

[[1,1,224,224],[1,3,224,224]]表示有两个输入，其中一个输入的 shape 是[1,1,224,224]，

另外一个输入的 shape 是[1,3,224,224]。必填参数。

返回值 0：导入成功

-1：导入失败

举例如下：

从当前目录加载 resnet18 模型

ret = rknn.load_pytorch(model = './resnet18.pt',
input_size_list=[[1,3,224,224]])

3.5.3.7 MXNet模型加载接口 (暂不支持)

API load_mxnet

描述 加载MXNet模型

参数 symbol：MXNet模型的网络结构文件，后缀是 json。必填参数。

params：MXnet模型的参数文件，后缀是 params。必填参数。

input_size_list ： 每 个 输 入 节 点 对 应 的 图 片 的 尺 寸 和 通 道 数 。 例 如

[[1,1,224,224],[1,3,224,224]]表示有两个输入，其中一个输入的 shape 是[1,1,224,224]，

另外一个输入的 shape 是[1,3,224,224]。必填参数。

返回值 0：导入成功

-1：导入失败

举例如下：

从当前目录加载 resnext50模型

ret = rknn.load_mxnet(symbol='resnext50_32x4d-symbol.json',
params='resnext50_32x4d-4ecf62e2.params',

22

input_size_list=[[1,3,224,224]])

3.5.4 构建 RKNN模型

API build

描述 根据导入的模型，构建对应的 RKNN模型。

参数 do_quantization：是否对模型进行量化，值为 True或 False。

dataset：量化校正数据的数据集。目前支持文本文件格式，用户可以把用于校正的图

片（jpg 或 png 格式）或 npy 文件路径放到一个.txt 文件中。文本文件里每一行一条

路径信息。如：

a.jpg

b.jpg

或

a.npy

b.npy

如有多个输入，则每个输入对应的文件用空格隔开，如：

a.jpg a2.jpg

b.jpg b2.jpg

或

a.npy a2.npy

b.npy b2.npy

rknn_batch_size：暂不支持

模型的输入 Batch 参数调整，默认值为 1。如果大于 1，则可以在一次推理中同时推

理多帧输入图像或输入数据，如MobileNet模型的原始 input维度为[1, 224, 224, 3]，

output维度为[1, 1001]，当 rknn_batch_size设为 4时，input的维度变为[4, 224, 224, 3]，

output维度变为[4, 1001]。

23

注：

1. rknn_batch_size 的调整并不会提高一般模型在 NPU上的执行性能，但却会显著

增加内存消耗以及增加单帧的延迟。

2. rknn_batch_size 的调整可以降低超小模型在 CPU上的消耗，提高超小模型的平

均帧率。（适用于模型太小，CPU的开销大于 NPU的开销）。

3. rknn_batch_size的值建议小于 32，避免内存占用太大而导致推理失败。

4. rknn_batch_size 修改后，模型的 input/output 维度会被修改，使用 inference 推

理模型时需要设置相应的 input 的大小，后处理时，也需要对返回的 outputs进

行处理。

返回值 0：构建成功

-1：构建失败

举例如下：

构建 RKNN模型，并且做量化

ret = rknn.build(do_quantization=True, dataset='./dataset.txt')

3.5.5 导出 RKNN模型

前一个接口构建的 RKNN模型可以保存成一个文件，之后如果想要再使用该模型在硬件上进

行推理，可直接通过 load_rknn接口加载模型，或者直接部署到硬件平台上。

API export_rknn

描述 将 RKNN模型保存到指定文件中（.rknn后缀）。

参数 export_path：导出模型文件的路径。

返回值
0：导出成功

-1：导出失败

举例如下：

……

24

将构建好的 RKNN模型保存到当前路径的 mobilenet_v1.rknn文件中

ret = rknn.export_rknn(export_path = './mobilenet_v1.rknn')
……

3.5.6 加载 RKNN模型

API load_rknn

描述 加载 RKNN模型。加载后的模型仅限于连接 NPU硬件进行推理或获取性能数据等。

不能用于模拟器或精度分析等。

参数 path：RKNN模型文件路径。

load_model_in_npu: 是否直接加载 npu中的 rknn模型。其中 path 为 rknn模型在 npu

中的路径。只有当 RKNN-Toolkit2运行在连有 NPU设备的 PC上时才可以设为 True。

默认值为 False。目前暂不支持。

返回值 0：加载成功

-1：加载失败

举例如下：

从当前路径加载 mobilenet_v1.rknn 模型

ret = rknn.load_rknn(path='./mobilenet_v1.rknn')

3.5.7 初始化运行时环境

在模型推理或性能评估之前，必须先初始化运行时环境，确定模型在哪一个硬件平台上运行

或直接通过模拟器运行。

API init_runtime

描述 初始化运行时环境。确定模型运行的设备信息（硬件平台信息、设备 ID）；性能评

估时是否启用 debug 模式，以获取更详细的性能信息。

参数 target：目标硬件平台，支持“rk3566”、“rk3568”。默认为 None，即在 PC 使用

工具时，模型在模拟器上运行。目前 rk3566/rk3568参数暂不支持。

device_id：设备编号，如果 PC连接多台设备时，需要指定该参数，设备编号可以通

25

过”list_devices”接口查看。默认值为 None。

目前该参数暂不支持。

perf_debug：进行性能评估时是否开启 debug模式。在 debug模式下，可以获取到每

一层的运行时间，否则只能获取模型运行的总时间。默认值为 False。目前该参数暂

不支持。

eval_mem: 是否进入内存评估模式。进入内存评估模式后，可以调用 eval_memory

接口获取模型运行时的内存使用情况。默认值为 False。目前该参数暂不支持。

async_mode：是否使用异步模式。调用推理接口时，涉及设置输入图片、模型推理、

获取推理结果三个阶段。如果开启了异步模式，设置当前帧的输入将与推理上一帧

同时进行，所以除第一帧外，之后的每一帧都可以隐藏设置输入的时间，从而提升

性能。在异步模式下，每次返回的推理结果都是上一帧的。该参数的默认值为 False。

目前该参数暂不支持。

返回值 0：初始化运行时环境成功。

-1：初始化运行时环境失败。

举例如下：

初始化运行时环境

ret = rknn.init_runtime(target='rk3566', device_id='012345789AB')
if ret != 0:

print('Init runtime environment failed')
exit(ret)

3.5.8 模型推理

在使用模型进行推理前，必须先构建或加载一个 RKNN模型。

API inference

描述 使用模型进行推理，返回推理结果。

如果 RKNN-Toolkit2运行在 PC上，且初始化运行环境时设置 target为 Rockchip NPU

设备，得到的是模型在硬件平台上的推理结果。

26

如果 RKNN-Toolkit2运行在 PC 上，且初始化运行环境时没有设置 target，得到的是

模型在模拟器上的推理结果。

参数 inputs：待推理的输入，如经过 cv2处理的图片。格式是 ndarray list。

data_format：数据模式，可以填以下值: “nchw”, “nhwc”。默认值为'nhwc'。

inputs_pass_through: 将输入透传给 NPU 驱动。非透传模式下，在将输入传给 NPU

驱动之前，工具会对输入进行减均值、除方差等操作；而透传模式下，不会做这些

操作。这个参数的值是一个数组，比如要透传 input0，不透传 input1，则这个参数的

值为[1, 0]。默认值为 None，即对所有输入都不透传。

返回值 results：推理结果，类型是 ndarray list。

举例如下：

对于分类模型，如 mobilenet_v1，代码如下（完整代码参考 example/tflite/mobilent_v1）：

使用模型对图片进行推理，得到 TOP5结果

……

outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
……

输出的 TOP5结果如下：

-----TOP 5-----
[156]: 0.85107421875
[155]: 0.09173583984375
[205]: 0.01358795166015625
[284]: 0.006465911865234375
[194]: 0.002239227294921875

对 于 目 标 检 测 的 模 型 ， 如 ssd_mobilenet_v1 ， 代 码 如 下 (完 整 代 码 参 考

example/tensorflow/ssd_mobilenet_v1)：

使用模型对图片进行推理，得到目标检测结果

……

outputs = rknn.inference(inputs=[image])
……

输出的结果经过后处理后输出如下图片（物体边框的颜色是随机生成的，所以每次运行这个

27

example得到的边框颜色会有所不同）：

图 3-4-8-1 ssd_mobilenet_v1 inference 结果

3.5.9 评估模型性能

暂不支持。

3.5.10 获取内存使用情况

暂不支持。

3.5.11 查询 SDK版本

暂不支持。

3.5.12 混合量化

暂不支持。

28

3.5.12.1 hybrid_quantization_step1

使用混合量化功能时，第一阶段调用的主要接口是 hybrid_quantization_step1，用于生成临时

模 型 文 件 （ {model_name}.model ） 、 数 据 文 件 （ {model_name}.data ） 和 量 化 配 置 文 件

（{model_name}.quantization.cfg）。接口详情如下：

API hybrid_quantization_step1

描述 根据加载的原始模型，生成对应的临时模型文件、配置文件和量化配置文件。

参数 dataset: 量化校正数据的数据集。目前支持文本文件格式，用户可以把用于校正的图

片（jpg 或 png 格式）或 npy 文件路径放到一个.txt 文件中。文本文件里每一行一条

路径信息。如：

a.jpg

b.jpg

或

a.npy

b.npy

返回值 0：成功

-1：失败

举例如下：

Call hybrid_quantization_step1 to generate quantization config
……

ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt')
……

3.5.12.2 hybrid_quantization_step2

使 用 混 合 量 化 功 能 时 ， 生 成 混 合 量 化 RKNN 模 型 阶 段 调 用 的 主 要 接 口 是

hybrid_quantization_step2。接口详情如下：

API hybrid_quantization_step2

29

描述 接收临时模型文件、配置文件、量化配置文件、校正数据集作为输入，生成混合量

化后的 RKNN模型。

参数 model_input: 第一步生成的临时模型文件，形如“{model_name}.model”。数据类型

为字符串。必填参数。

data_input: 第一步生成的配置文件，形如“{model_name}.data”。数据类型为字符

串。必填参数。

model_quantization_cfg: 经 过 修 改 后 的 模 型 量 化 配 置 文 件 ， 形 如

“{model_name}.quantization.cfg”。数据类型为字符串。必填参数。

返回值 0：成功

-1：失败

举例如下：

Call hybrid_quantization_step2 to generate hybrid quantized RKNN model
……

ret = rknn.hybrid_quantization_step2(
model_input='./ssd_mobilenet_v2.model',
data_input='./ssd_mobilenet_v2.data',
model_quantization_cfg='./ssd_mobilenet_v2.quantization.cfg',
)

……

3.5.13 量化精度分析

该接口的功能是进行浮点、量化推理并产生每层的数据，用于量化精度分析。

API accuracy_analysis

描述 推理并产生快照，也就是 dump出每一层的 tensor数据。会 dump出包括 fp32和 qnt

两种数据类型的快照，用于计算量化误差。

注：

1. 该接口只能在 build 或 hybrid_quantization_step2 之后调用，并且原始模型应

该为非量化的模型，否则会调用失败。

2. 该接口使用的量化方式与 config中指定的一致。

30

参数 inputs：图像路径 list或者 numpy.ndarray list。

output_dir：输出目录，所有快照都保存在该目录。

如果没有设置 target，输出的目录结构如下：

├── entire_qnt

├── fp32

├── order.txt

..├── error_analysis.txt

各文件/目录含义如下：

 entire_qnt目录：保存整个量化模型完整运行时每一层的结果（已转成 float32）；

 fp32目录：保存整个浮点模型完整跑下来时每一层的结果;

 order.txt：记录 dump 出的每一层的 tensor数据顺序；

 error_analysis.txt：记录量化模型逐层运行时每一层的结果与浮点模型的余弦距

离(entire_error cosine)，以及量化模型取上一层的浮点结果作为输入时，输出与

浮点模型的余弦距离(per_layer_error cosine)。

calc_qnt_error：是否计算量化误差（默认为 True）。

返回值 0：成功

-1：失败

举例如下：

……

Create RKNN object
rknn = RKNN(verbose=True)

print('--> config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128],)
print('done')

Load model
print('--> Loading model')
ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',

inputs=['input'],
outputs=['MobilenetV1/Logits/SpatialSqueeze'],

31

input_size_list=[[1, 224, 224, 3]])
if ret != 0:

print('Load mobilenet_v1 failed!')
exit(ret)

print('done')

Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='dataset.txt')
if ret != 0:

print('build mobilenet_v1 failed!')
exit(ret)

print('done')

print('--> Accuracy analysis')
rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir=None)

……

3.5.14 注册自定义算子

暂不支持。

3.5.15 查询模型可运行平台

暂不支持。

	1概述
	1.1主要功能说明
	1.2适用芯片
	1.3适用系统

	2系统依赖说明
	3使用说明
	3.1安装
	3.1.1通过pip install命令安装
	3.1.2通过DOCKER镜像安装

	3.2RKNN-Toolkit2的使用
	3.2.1场景一：模型运行在模拟器上
	3.2.1.1 运行非RKNN模型

	3.2.2场景二：模型运行在与PC相连的Rockchip NPU平台上
	3.2.2.1 运行非RKNN模型
	3.2.2.2 运行RKNN模型

	3.2.3场景三：模型运行在RK356x Linux开发板上

	3.3混合量化
	3.3.1混合量化功能用法
	3.3.2混合量化配置文件
	3.3.3混合量化使用流程

	3.4示例
	3.5API详细说明
	3.5.1RKNN初始化及对象释放
	3.5.2RKNN模型配置
	3.5.3模型加载
	3.5.3.1 Caffe模型加载接口
	3.5.3.2 TensorFlow模型加载接口
	3.5.3.3 TensorFlow Lite模型加载接口
	3.5.3.4 ONNX模型加载
	3.5.3.5 Darknet模型加载接口
	3.5.3.6 Pytorch模型加载接口
	3.5.3.7 MXNet模型加载接口 (暂不支持)

	3.5.4构建RKNN模型
	3.5.5导出RKNN模型
	0：导出成功
	3.5.6加载RKNN模型
	3.5.7初始化运行时环境
	3.5.8模型推理
	3.5.9评估模型性能
	3.5.10获取内存使用情况
	3.5.11查询SDK版本
	3.5.12混合量化
	3.5.12.1hybrid_quantization_step1
	3.5.12.2hybrid_quantization_step2

	3.5.13量化精度分析
	3.5.14注册自定义算子
	3.5.15查询模型可运行平台

