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1 Overview

1.1 Main function description

RKNN-Toolkit2 is a development kit that provides users with model conversion, inference and

performance evaluation on PC and Rockchip NPU platforms. Users can easily complete the following

functions through the Python interface provided by the tool:

D

2)

3)

4

5)

6)

Model conversion: support to convert Caffe / TensorFlow / TensorFlow Lite / ONNX / Darknet
/ PyTorch model to RKNN model, support RKNN model import/export, which can be used on
Rockchip NPU platform later.

Quantization: support to convert float model to quantization model, currently support quantized
methods including asymmetric quantization (asymmetric_quantized-8,
asymmetric_quantized-16). and support hybrid quantization. Asymmetric_quantized-16 and
hybrid quantization not supported yet.

Model inference: Able to simulate Rockchip NPU to run RKNN model on PC and get the
inference result. This tool can also distribute the RKNN model to the specified NPU device to
run, and get the inference results.

Performance evaluation: distribute the RKNN model to the specified NPU device to run, and
evaluate the model performance in the actual device.

Memory evaluation: Evaluate memory consumption at runtime of the model. When using this
function, the RKNN model must be distributed to the NPU device to run, and then call the
relevant interface to obtain memory information.

Quantitative error analysis: This function will give the Euclidean or cosine distance of each
layer of inference results before and after the model is quantized. This can be used to analyze
how quantitative error occurs, and provide ideas for improving the accuracy of quantitative

models.

Note: Some features are limited by the operating system or chip platform and cannot be used on



some operating systems or platforms. The feature support list of each operating system (platform) is as

follows:

Ubuntu 18.04 Windows 7/10 Debian 9.8 / 10 | MacOS Mojave /

(ARM 64) Catalina

Model conversion | yes

Quantization yes
Model inference yes
Performance yes
evaluation

Memory yes
evaluation

Multiple inputs

Batch inference

List devices yes
Query SDK | yes
version

Quantitative error | yes

analysis

Visualization

Model yes

optimization level

1.2 Applicable chip model

® RK3566

® RK3568



1.3 Applicable Operating System

RKNN Toolkit2 is a cross-platform development kit. The supported operating systems are as
follows:

® Ubuntu: 18.04 (x64) or later



2 Requirements/Dependencies

It is recommended to meet the following requirements in the operating system environment:

Table 1 Operating system environment

Operating system version

Ubuntul8.04(x64)or later

Python version

3.6

Python library

dependencies

numpy==1.16.6

onnx==1.7.0

onnxoptimizer==0.1.0
onnxruntime==1.7.0
tensorflow==1.14.0
tensorboard==1.14.0
protobuf==3.12.0
torch==1.6.0
torchvision==0.7.0
mxnet==1.7.0
psutil==5.6.2
ruamel.yaml==0.15.81
scipy==1.2.1
tqdm==4.27.0
requests==2.21.0
tflite==2.3.0
opencv-python==4.4.0.46
PuLP==2.4

Note:
1. This document mainly uses Ubuntu 18.04 / Python3.6 as an example. For other operating
systems, please refer to the corresponding quick start guide:

<Rockchip Quick Start RKNN_ Toolkit2 EN.pdf>.



3 User Guide

3.1 Installation

There are two ways to install RKNN-Toolkit2: one is through the Python package installation and
management tool pip, the other is running docker image with full RKNN-Toolkit2 environment. The

specific steps of the two installation ways are described below.

3.1.1 Install by pip command

1. Create virtualenv environment. If there are multiple versions of the Python environment in the

system, it is recommended to use virtualenv to manage the Python environment.

sudo apt install virtualenv

sudo apt-get install python3 python3-dev python3-pip

sudo apt-get install libxsltl-dev zliblg zliblg-dev libglib2.0-0 \
libsm6 libgl1-mesa-glx libprotobuf-dev gcc

virtualenv -p /ust/bin/python3 venv
source venv/bin/activate

2. Install dependent libraries:

pip3 install -r doc/requirements.txt

Note: RKNN-Toolkit2 itself does not rely on opencv-python, but the example will use this
library to load image, so the library is also installed here.

3. Install RKNN-Toolkit2

pip install package/rknn_toolkit2*.whl

Please select corresponding installation package (located at the packages/ directory) according to
different python versions and processor architectures:

® Python3.6 for x86_64: rknn_toolkit2-1.0.0-cp36-cp36m-linux_x86 64.whl



3.1.2 Install by the Docker Image

In docker folder, there is a Docker image that has been packaged for all development requirements,
Users only need to load the image and can directly use RKNN-toolkit2, detailed steps are as follows:
1. Install Docker
Please install Docker according to the official manual:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Load Docker image

Execute the following command to load Docker image:

docker load --input rknn-toolkit2-1.0.0-docker.tar.gz

After loading successfully, execute "docker images" command and the image of rknn-toolkit2

appears as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
rknn-toolkit2 1.0.0 4f6bac6686d8 1 hours ago  4.13GB

3. Run image
Execute the following command to run the docker image. After running, it will enter the bash

environment.

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit2:1.0.0 /bin/bash

If you want to map your own code, you can add the "-v <host src folder>:<image dst folder>"

parameter, for example:

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v /home/rk/test:/test
rknn-toolkit2:1.0.0 /bin/bash

4. Run demo

cd /example/tflite/mobilenet v1
python test.py


https://docs.docker.com/install/linux/docker-ce/ubuntu/

3.2 Usage of RKNN-Toolkit2

Next, the use process of RKNN Toolkit2 under each use scenario will be given in detail.

3.2.1 Scenario 1: Inference for Simulation on PC

In this scenario, RKNN Toolkit2 runs on the PC, and runs the model through the simulator.

Depending on the type of model, this scenario can be divided into two sub-scenarios: one scenario is
that the model is a non-RKNN model, i.e. Caffe, TensorFlow, TensorFlow Lite, ONNX, DarkNet,
PyTorch model, and the other scenario is that the model is an RKNN model which is a proprietary model
of Rockchip with the file suffix "rknn".

Note: Simulator only supported on x86_64 Linux.

3.2.1.1 run the non-RKNN model

When running a non-RKNN model, the RKNN-Toolkit2 usage flow is shown below:



Create RKNN object to initialize RKNN
SDK environment

Call config interface to set pre-processing
parameters of model

v

Call load_cafte, load_tensorflow,
load_tflite, load_onnx, load_darknet,
load_pytorch, load_mxnet interface to

load original Caffe, TensorFlow,
TensorFlow Lite, ONNX, Darknet, Pytorch
or MXNet model

v

Call build interface to build RKNN model
I

Call init_runtime interface
to initialize the runtime
environment

\ L L A

: Call inference interface to :
Iperform inference with input :
I

: Call eval_memory interface:
Ito get memory useage when |

Call export_rknn

I

l'evaluate performance of model to terface ; :
interface to export |

I

1 get the running time of each layer

I | .

t t It 5 . . RKNN
e ! land total running time of model __| |Md Mg | | _RKNNmode

[ 1 ]

Call release interface to release RKNN
object
y
End

Figure 1 Usage flow of RKNN-Toolkit2 when running a non-RKNN model on PC

Note:

1. The above steps should be performed in order.

2.The model exporting step marked in the blue box is not necessary. If you exported, you can use
load rknn to load it later on.

3. The order of model inference, performance evaluation and memory evaluation steps marked in
red box is not fixed, it depends on the actual demand.

4. Only when the target hardware platform is Rockchip NPU, we can call eval perf/ eval memory

interface.



3.2.2 Scenario 2: Run on Rockchip NPU connected to the PC.

Rockchip NPU platforms currently supported by RKNN Toolkit2 include RK3566 / RK3568.

In this Scenario, In this scenario, RKNN Toolkit2 runs on the PC and connects to the NPU device
through the PC's USB. RKNN Toolkit2 transfers the RKNN model to the NPU device to run, and then
obtains the inference results, performance information, etc. from the NPU device

First, we need to complete the following two steps:

1. Make sure the USB OTG of development board is connected to PC, and call list_devices interface
will show the device. More information about "list_devices" interface can see Scction 3.5.15.

2. "Target" parameter and "device id" parameter need to be specified when calling "init_runtime"
interface to initialize the runtime environment, where "target" indicates the type of hardware, optional
values are "rk3566" and "rk3568". When multiple devices are connected to PC, "device id" parameter

needs to be specified. It is a string which can be obtained by calling "list_devices" interface, for example:

all device(s) with adb mode:
VD46C3KM6N

Runtime initialization code is as follows:

# RK3566
ret = init_runtime(target="rk3366', device id='"VGEJY9PW7T")

# RK3568
ret = init_runtime(target="rk3568', device id='515e9b401c060c0b")

3.2.2.1 run the non-RKNN model

If the model is a non-RKNN model (Caffe, TensorFlow, TensorFlow Lite, ONNX, DarkNet,
PyTorch), the usage flow and precautions of RKNN-Toolkit2 are the same as the sub-scenario 1 of the

scenario 1(see Section 3.2.1.1).



3.2.2.2 run the RKNN model

When running an RKNN model, users do not need to set model pre-processing parameters, nor do

they need to build an RKNN model, the usage flow is shown in the following figure.

( Start )

y
Create RKNN object to initialize RKNN
SDK environment

A
Call load_rknn interface to load RKNN
model

A

Call init_runtime interface to initialize the
runtime environment

Call eval perf interface to evaluate :
: performance of model to get the |

|
: | running time of each layer and total :
|

T
| Call inference interface to b
: perform inference with
| input to get results

Call eval_ memory interface:

I
I

I to get the memory usage :
: when model running, :

A 4
Call release interface to release RKNN

object

v

End

Figure 2 Usage flow of RKNN-Toolkit2 when running an RKNN model on PC
Note:
1. The above steps should be performed in order.
2. The order of model inference, performance evaluation and memory evaluation steps marked in
red box is not fixed, it depends on the actual demand.
3. We can call inference / eval_perf/ eval memory only when the target is hardware platform.
4. The import method through load rknn is only used for the use of hardware platform-related

functions, and functions such as accuracy analysis cannot be used.



3.2.3 Scenario 3: Inference on RK356x Linux development board

Not supported yet.

In this scenario, RKNN-Toolkit2 is installed in RK356x Linux system directly. The built or imported
RKNN model runs directly on RK356x to obtain the actual inference results or performance information
of the model.

For RK356x Linux development board, the usage flow of RKNN-Toolkit2 depends on the type of
model. If the model is a non-RKNN model, the usage flow is the same as that in the sub-scenario 1 of
scenario 1(see Section 3.2.1.1), otherwise, please refer to the usage flow in the sub-scenario 2 of

scenariol(see Section 3.2.2.2).

3.3 Hybrid Quantization

Not supported yet.

The quantization feature can ensure the accuracy of model based on improved model inference
speed. But for some models, the accuracy has dropped a bit. In order to better balance performance and
accuracy, we add new feature hybrid quantization. Users can decide which layers to quantize or not
manually, the quantization parameters also can been modified.

Note:

1. The examples/common function demos directory provides a hybrid quantization example

named hybrid quantization. Users can refer to this example for hybrid quantification practice.

3.3.1 Instructions of hybrid quantization

Currently, RKNN Toolkit2 has three kind of ways to use hybrid quantization:
1. Convert quantized layer to non-quantized (e.g. float16) layer. Due to the low non-quantized

computing power on the NPU, the inference speed will be reduced.



3.3.2 Hybrid quantization profile

When using the hybrid quantization feature, the first step is to generate a hybrid quantization profile,
which is briefly described in this section.

When the hybrid quantization interface hybrid quantization stepl is called, a configuration file of
{model name}.quantization.cfg is generated in the current directory. The configuration file format is as

follows:

custom_quantize layers: {}
quantize parameters:
FeatureExtractor/MobilenetV2/Conv/BatchNorm/batchnorm/add_1:0:
gtype: asymmetric_quantized
gqmethod: layer
dtype: int8
min:
- 0.0
max:
- 6.0
scale:
- 0.023529411764705882
zero_point:
- -128
ori_min:
- -13.971162796020508
ori_max:
- 22.79466438293457

The first line of the body of the configuration file is a dictionary of customized quantize layers, add
the layer names and their corresponding quantized type (choose from floatlé / int16) to be changed to
customized quantize layers.

Next is the quantization parameter of each operand in the model, and each operand is a dictionary.
The key of each dictionary is tensor name, the value of dictionary is quantization parameter, if it is not

quantized, the "dtype" value is float16.
3.3.3 Usage flow of hybrid quantization

When using the hybrid quantization function, it can be done in four steps.



Stepl, load the original model and generate a quantize configuration file, a model structure file and a

model weight bias file. The specific interface call process is as follows:

Create RKNN object to initialize RKNN

environment

v

Call config interface to set pre-processing

parameters of model
v

Call load_caffe / load_tensorflow /

load_tflite / load_onnx / load_darknet /
load_pytorch / load_mxnet interface to load
original Caffe / TensorFlow / TensorFlow Lite

/ ONNX / DarkNet / PyTorch / MXNet model

!

Call hybrid_quantization_step] interface to

generate quantization
profile({model name}.quantization.cfg),
temporary model file({model name}.model),
data file({model name}.data)
v

Call release interface to release RKNN object

End

Figure 3 call process of hybrid quantization step 1
Step 2, Modify the quantization configuration file generated in the first step.
® If some quantization layers is changed to a non-quantization layer, find the output operand of
layer that is not to be quantized, and add these operands name and floatl6 to
custom_quantize layers, such as "<operands name>: float16".

Step 3, generate hybrid quantized RKNN model. The specific interface call flow is as follows:



( Start )

y
Create RKNN object to initialize
RKNN SDK environment

A
Call config interface to set pre-—
processing parameters of model

A 4
Call hybrid quantization_step2
interface to build hybrid quantized
RKNN model

A 4
Call export_rknn interface to
export RKNN model

A 4
Call release interface to release
RKNN object

A 4
End

Figure 4 call process of hybrid quantization step 3

Step 4, use the RKNN model generated in the previous step to inference.

3.4 Example

The following 1is the sample code for loading TensorFlow Lite model (see the
example/tflite/mobilenet vl directory for details), if it is executed on PC, the RKNN model will run on

the simulator.

import numpy as np
import cv2
from rknn.api import RKNN

def show_outputs(outputs):
output = outputs[0][0]
output sorted = sorted(output, reverse=True)
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
for i in range(5):
value = output_sorted[i]
index = np.where(output == value)



for j in range(len(index)):
if i+j)>=35:
break
if value > 0:
topi ='{}: {}\n".format(index[j], value)
else:
topi ='-1: 0.0\n'
top5_str += topi
print(top5_str)

' 1

if name ==' main "
# Create RKNN object
rknn = RKNN()

# pre-process config

print('--> config model")

rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128])
print('done")

# Load tensorflow model
print('--> Loading model')
ret = rknn.load_tflite(model='mobilenet vl 1.0 224 tflite")
if ret |=0:
print('Load mobilenet _v1 failed!")
exit(ret)
print('done")

# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset="./dataset.txt')
if ret !=0:
print('Build mobilenet v1 failed!")
exit(ret)
print('done")

# Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn('./mobilenet v1.rknn')
ifret I=0:
print('"Export mobilenet v1.rknn failed!")
exit(ret)
print('done")

# Set inputs

img = cv2.imread('./dog 224x224.jpg")

img = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
img = np.expand dims(img, 0)



# init runtime environment

print('--> Init runtime environment')

ret = rknn.init_runtime()

ifret I=0:
print('Init runtime environment failed’)
exit(ret)

print('done")

# Inference

print('--> Running model")

outputs = rknn.inference(inputs=[img])
show_outputs(outputs)

print('done")

rknn.release()

Where dataset.txt is a text file containing the path of the test image. For example, if a picture of
dog 224x224.jpg in the example/tflite/mobilenet vI directory, then the corresponding content in

dataset.txt is as follows:

dog 224x224.jpg

When performing model inference, the result of this demo is as follows:

[156]: 0.8544921875
[155]: 0.080322265625

[205]: 0.0129241943359375
[284]: 0.0084075927734375
[194]: 0.0025787353515625

3.5 RKNN-Toolkit2 API description

3.5.1 RKNN object initialization and release

The initialization/release function group consists of API interfaces to initialize and release the
RKNN object as needed. The RKNN() must be called before using all the API interfaces of
RKNN-Toolkit2, and call the release() method to release the object when task finished.

When the RKNN object is initing, the users can set verbose and verbose_file parameters, used to show
detailed log information of model loading, building and so on. The data type of verbose parameter is bool.

If the value of this parameter is set to True, the RKNN Toolkit2 will show detailed log information on



screen. The data type of verbose file is string. If the value of this parameter is set to a file path, the

detailed log information will be written to this file (the verbose also need be set to True).

The sample code is as follows:

# Show the detailed log information on screen, and saved to

# mobilenet build.log

rknn = RKNN(verbose=True, verbose file="./mobilenet_build.log")
# Only show the detailed log information on screen.

rknn = RKNN(verbose=True)

rknn.release()

3.5.2 RKNN model configuration

Before the RKNN model is built, the model needs to be configured first through the config interface.

API config
Description | Set model parameters
Parameter batch size: The size of each batch of data sets. The default value is 100. When

quantifying, the amount of data to imported in each batch will be determined according to

this parameter to correct the quantization results.

mean_values: The mean values of the input. The parameter format is a list. The list
contains one or more mean sublists. The multi-input model corresponds to multiple
sublists. The length of each sublist is consistent with the number of channels of the input.
For example, if the parameter is [[128,128,128]], it means an input subtract 128 from the
values of the three channels. If quant img RGB2BGR is set to True, the RGB2BGR

conversion will be done first, and then the average value will be subtracted.

std_values: The normalized value of the input. The parameter format is a list. The list
contains one or more normalized value sublists. The multi-input model corresponds to
multiple sublists. The length of each sublist is consistent with the number of channels of

the input. For example, if the parameter is [[128,128,128]], it means the value of the three




channels of an input minus the average value and then divide by 128. If
quant_img RGB2BGR is set to True, the RGB2BGR conversion will be performed first,

followed by subtracting the mean value and dividing by the normalized value.

epochs: Number of iterations in quantization. Quantization parameter calibration is
performed with specified data at each iteration. Default value is -1, in this situation, the
number of iteration is automatically calculated based on the amount of data in the dataset.

Not support yet.

quant_img RGB2BGR: Indicates whether the RGB2BGR operation needs to be done first
when loading the quantized image. The default value is False. If there are multiple inputs,
the corresponding parameters for each input is split with ',', such as [True, True, False].
This configuration is generally used on the Caffe model. Most of the Caffe model training
will perform RGB2BGR conversion on the dataset image firstly. At this time, the
configuration needs to be set to True.

In addition, this configuration is only valid for the quantized image format of
jpg/ipeg/png/bmp. This configuration is ignored when the npy format is read. Therefore,
when the model input is BGR, npy also needs to be in BGR format.

This configuration is only used to read the quantize image in the quantization stage,
and will not be recorded in the final RKNN model. Therefore, if the input of the
model is BGR, you need to ensure that the imported image data is also in BGR

format before calling the inference of the toolkit or the run function of the C-API.

quantized dtype: Quantization type, the quantization types currently supported are
asymmetric_quantized-8,  asymmetric_quantized-16.  The  default  value is

asymmetric_quantized-8. asymmetric_quantized-16 is not supported yet.

quantized algorithm: The quantization algorithm used when calcaulating the quantization

parameters of each layer. Currently support: normal, mmse. Default is normal.




The characteristic of normal quantization algorithm is fast. The recommended
quantization data is generally about 20-100 pieces. with more data, the accuracy may not
be further improved.

The mmse quantization algorithm is slower due to the violent iteration method, but usually
has higher accuracy than normal. The recommended quantization data is generally about
20-50 pieces. Users can also increase or decrease the amount of data appropriately

according to the length of the quantization time.

mmse_epoch: mmse epochs, default is 3. The more iterations of MMSE quantization

algorithm, the higher quantization accuracy may be obtained.

quantized _method: Currently support layer or channel, That is each layer has only one set
of quantization parameters or each channel of weight has its own set of quantization

parameters. Usually the channel will be more accurate than the layer, default is layer.

optimization_level: Model optimization level. By modifying the model optimization level,
you can turn off some or all of the optimization rules used in the model conversion
process. The default value of this parameter is 3, and all optimization options are turned
on. When the value is 2 or 1, turn off some optimization options that may affect the

accuracy of some models. Turn off all optimization options when the value is 0.

target platform: Specify which target chip platform the RKNN model is based on.

RK3566 and RK3568 are currently supported.

custom_string: Add custom string information to rknn model, then can query the

information at runtime.

Return

Value

None

The sample code is as follows:

# model config
rknn.config(mean_values=[[103.94, 116.78, 123.68]],

std_values=[[58.82, 58.82, 58.82]],




quant_img RGB2BGR=True, target platform='rk3566")

3.5.3 Loading non-RKNN model

RKNN-Toolkit2 currently supports load non-RKNN models of Caffe, TensorFlow, TensorFlow Lite,

ONNX, DarkNet, PyTorch. There are different calling interfaces when loading models, the loading

interfaces are described in detail below.

3.5.3.1 Loading Caffe model

API

load_caffe

Description

Load Caffe model

Parameter

model: The path of Caffe model structure file (suffixed with ".prototxt" ).

proto: Caffe model format (valid value is 'caffe' or 'Istm_caffe'). Plaese use 'Istm_caffe'

when the model is RNN model. 'Istm_caffe' is not supported yet.

blobs: The path of Caffe model binary data file (suffixed with ".caffemodel"). The value

can be None, RKNN Toolkit2 will randomly generate parameters such as weights.

inputname: When the caffe model has multiple inputs, you can specify the order of the
input layer names through this parameter, such as ['inputl','input2','input3'],note that the
name needs to be consistent with the model input name; It can also be set default. The

sequence is automatically given by the caffe model file (file suffix with .prototxt).

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the mobilenet v2 Caffe model in the current path
ret = rknn.load_caffe(model="./mobilenet v2.prototxt',

proto='caffe',
blobs="./mobilenet_v2.caffemodel’)




3.5.3.2 Loading TensorFlow model

API load_tensorflow

Description | Load TensorFlow model

Parameter | tf pb: The path of TensorFlow model file (suffixed with ".pb").
inputs: The input node of model, input with multiple nodes is supported now. All the input
node string are placed in a list.
input_size list: The size and number of channels of the image corresponding to the input
node. As in the example of mobilenet vl model, the input_size list parameter should be
set to [[224,224,3]].
outputs: The output node of model, output with multiple nodes is supported now. All the
output nodes are placed in a list.
predef file: In order to support some controlling logic, a predefined file in npz format
needs to be provided. This predefined fie can be generated by the following function call:
np.savez('prd.npz', [placeholder name]=prd_value).If there are / in placeholder name, use #
to replace. Not supported yet.

Return 0: Import successfully

value -1: Import failed

The sample code is as follows:

# Load ssd_mobilenet vl coco 2017 11 17 TF model in the current path
ret = rknn.load_tensorflow(

tf pb='"./ssd_mobilenet vl coco 2017 11 17.pb',

inputs=['FeatureExtractor/MobilenetV 1/MobilenetV1/Conv2d 0
/BatchNorm/batchnorm/mul_1'],

outputs=['concat', 'concat 1],

input_size list=[[300, 300, 3]])




3.5.3.3 Loading TensorFlow Lite model

API load_tflite

Description | Load TensorFlow Lite model.

Parameter model: The path of TensorFlow Lite model file (suffixed with ".tflite").
Return 0: Import successfully

Value -1: Import failed

The sample code is as follows:

# Load the mobilenet vl TF-Lite model in the current path
ret = rknn.load_tflite(model = './mobilenet v1.tflite")

3.5.3.4 Loading ONNX model

API load_onnx

Description | Load ONNX model

Parameter model: The path of ONNX model file (suffixed with ".onnx")
Return 0: Import successfully

Value -1: Import failed

The sample code is as follows:

# Load the arcface onnx model in the current path
ret = rknn.load _onnx(model = './arcface.onnx")

3.5.3.5 Loading DarkNet model

API load_darknet
Description | Load DarkNet model
Parameter model: The path of DarkNet model structure file (suffixed with ".cfg").

weight: The path of weight file (suffixed with ".weight").




Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the yolov3-tiny DarkNet model in the current path
ret = rknn.load darknet(model = './yolov3-tiny.cfg',

weight="./yolov3.weights")

3.5.3.6 Loading PyTorch model

API load_pytorch

Description | Load PyTorch model

Parameter model:The path of PyTorch model structure file (suffixed with ".pt"), and need a model in
the torchscript format. Required.
input_size list:The size and number of channels of each input node. For example,
[[1,1,224,224],[1,3,224,224]] means there are two inputs. One of the input shapes is [1,1,
224, 224], and the other input shape is [1,3, 224, 224]. Required.

Return 0: Import successfully

Value -1: Import failed

The sample code is as follows:

# Load the PyTorch model resnet18 in the current path
ret = rknn. load_pytorch(model = './resnet18.pt',

input_size list=[[1,3,224,224]])

3.5.3.7 Loading MXNet model

Not support yet.

API

load_mxnet

Description

Load MXNet model




Parameter symbol:Network structure file of MXNet model, suffixed with "json". Required.

params:Network parameters file of MXNet model, suffixed with "params". Required.

input_size list:The size and number of channels of each input node. For example,
[[1,1,224,224],[1,3,224,224]] means there are two inputs. One of the input shapes is [1,1,

224, 224], and the other input shape is [1,3, 224, 224]. Required.

Return 0: Import successfully

Value -1: Import failed

The sample code is as follows:

# Load the MXNet model resnext50 in the current path

ret = rknn.load mxnet(symbol="resnext50 32x4d-symbol.json’,
params='resnext50 32x4d-4ecf62¢2.params',
input_size list=[[1,3,224,224]])

3.5.4 Building RKNN model

API build

Description | Build corresponding RKNN model according to imported model.

Parameter do_quantization: Whether to quantize the model, optional values are True and False.

dataset: A input data set for rectifying quantization parameters. Currently supports text file
format, the user can place the path of picture( jpg or png ) or npy file which is used for
rectification. A file path for each line. Such as:

ajpg

b.jpg

or

a.npy

b.npy

If there are multiple inputs, the corresponding files are divided by space. Such as:




a.jpg a2.jpg

b.jpg b2 jpg

or

a.npy a2.npy

b.npy b2.npy

Note: It is generally recommended to select the quantization image which is consistent

with the prediction scene.

rknn batch_size: batch size of input, default is 1. If greater than 1, NPU can inference

multiple frames of input image or input data in one inference. For example, original input

of MobileNet is [1, 224, 224, 3], output shape is [1, 1001]. When rknn_batch_size is set to

4, the input shape of MobileNet becomes [4, 224, 224, 3], output shape becomes [4, 1001].

Note:

1. The adjustment of rknn_batch_size does not improve the performance of the
general model on the NPU, but it will significantly increase memory consumption
and increase the delay of single frame.

2. The adjustment of rknn_batch_size can reduce the consumption of the
ultra-small model on the CPU and improve the average frame rate of the
ultra-small model. (Applicable to the model is too small, CPU overhead is greater
than the NPU overhead)

3. The value of rknn_batch_size is recommended to be less than 32, to avoid the
memory usage is too large and the reasoning fails.

4. After the rknn_batch_size is modified, the shape of input and output will be
modified. So the inputs of inference should be set to correct size. It's also needed
to process the returned outputs on post processing.

Not support yet.

Return

0: Build successfully




value

-1: Build failed

The sample code is as follows:

# Build and quantize RKNN model
ret = rknn.build(do_quantization=True, dataset='"./dataset.txt')

3.5.5 Export RKNN model

The RKNN model built by ‘build’ interface can be saved as a file, it can used to model deployment.

API export_rknn

Description | Save RKNN model in the specified file (suffixed with ".rknn").
Parameter export_path: The path of generated RKNN model file.

Return 0: Export successfully

Value -1: Export failed

The sample code is as follows:

# save the built RKNN model as a mobilenet v1.rknn file in the current  # path
ret = rknn.export_rknn(export_path ='./mobilenet v1.rknn")

3.5.6 Loading RKNN model

API load_rknn

Description | Load RKNN model. The loading model is limited to connecting to the NPU hardware for
inference or performance data acquisition. It can not be used for simulator or accuracy
analysis.

Parameter path: The path of RKNN model file.

load model in_npu: Whether to load RKNN model in NPU directly. The path parameter
should fill in the path of the model in NPU. It can be set to True only when
RKNN-Toolkit2 run on RK356x Linux or NPU device(RK3566, rk3568) is connected.

Default value is False. Not supported yet.




Return

Value

0: Load successfully

-1: Load failed

The sample code is as follows:

# Load the mobilenet vl RKNN model in the current path
ret = rknn.load_rknn(path='"./mobilenet v1.rknn')

3.5.7 Initialize the runtime environment

Before inference or performance evaluation, the runtime environment must be initialized. This

interface determines the type of runtime (hardware platform or software simulator).

API init_runtime

Description | Initialize the runtime environment. Set the device information (hardware platform, device
ID). Determine whether to enable debug mode to obtain more detailed performance
information for performance evaluation.

Parameter target: Target hardware platform, now supports "RK3566", "RK3568". The default value is

"None", which indicates model runs on simulator.

device_id: Device identity number, if multiple devices are connected to PC, this parameter
needs to be specified which can be obtained by calling "list_devices" interface. The default

value is "None ".

perf debug: Debug mode option for performance evaluation. In debug mode, the running
time of each layer can be obtained, otherwise, only the total running time of model can be

given. The default value is False.

eval mem: Whether enter memory evaluation mode. If set True, the eval memory
interface can be called later to fetch memory usage of model running. The default value is

False.

async_mode: Whether to use asynchronous mode. When calling the inference interface, it

involves setting the input picture, model running, and fetching the inference result. If the




asynchronous mode is enabled, setting the input of the current frame will be performed
simultaneously with the inference of the previous frame, so in addition to the first frame,
each subsequent frame can hide the setting input time, thereby improving performance. In
asynchronous mode, the inference result returned each time is the previous frame. The
default value for this parameter is False.

Not Supported yet.

Return

Value

0: Initialize the runtime environment successfully

-1: Initialize the runtime environment failed

The sample code is as follows:

# Initialize the runtime environment
ret = rknn.init_runtime(target="rk3566', device id='012345789AB")
if ret !=0:

print('Init runtime environment failed’)
exit(ret)

3.5.8 Inference with RKNN model

This interface kicks off the RKNN model inference and get the result of inference.

API

inference

Description

Use the model to perform inference with specified input and get the inference result.
Detailed scenarios are as follows:

1. If RKNN Toolkit2 is running on PC and the target is set to Rockchip NPU when
initializing the runtime environment, the inference of model is performed on the specified
hardware platform.

2. If RKNN Toolkit2 is running on PC and the target is not set when initializing the

runtime environment, the inference of model is performed on the simulator.

Parameter

inputs: Inputs to be inferred, such as images processed by cv2. The object type is ndarray

list.




data_format: The shape format of input data. Optional values are "nchw", "nhwc". The

default value is 'nhwc'.

inputs_pass_through: Pass the input transparently to the NPU driver. In non-transparent
mode, the tool will reduce the mean, divide the variance, etc. before the input is passed to
the NPU driver; in transparent mode, these operations will not be performed. The value of
this parameter is an array. For example, to pass input0 and not inputl, the value of this
parameter is [1, 0]. The default value is None, which means that all input is not

transparent.

Return results: The result of inference, the object type is ndarray list.

Value

The sample code is as follows:
For classification model, such as mobilenet vl, the code is as follows (refer to

example/tfilte/mobilenet v1 for the complete code):

# Preform inference for a picture with a model and get a top-5 result
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)

[156]: 0.85107421875
[155]: 0.09173583984375
[205]: 0.01358795166015625
[284]: 0.006465911865234375
[194]: 0.002239227294921875

For object detection model, such as ssd mobilenet vl, the code is as follows (refer to

example/tensorflow/ssd_mobilenet vl for the complete code):

# Perform inference for a picture with a model and get the result of object
# detection




outputs = rknn.inference(inputs=[image])

After the inference result is post-processed, the final output is shown in the following picture (the
color of the object border is randomly generated, so the border color obtained will be different each

time):

Figure 3 ssd_mobilenet v1 inference result

3.5.9 Evaluate model performance

API eval_perf

Description | Evaluate model performance.
Model must run on RK3566 or RK3568 which connected to PC.If setting perf debug to
False when initializing runtime environment, the performance information is obtained

from hardware, which only contains the total running time of model. And if the




perf debug is set to True, the running time of each layer will also be captured in detail.

Return

Value

perf result: Performance information. The object type is dictionary.
If running on device and set perf debug to False when initializing the runtime

environment, the dictionary gives only one field ‘total_time’, example is as follows:

{
‘total_time’: 1000

}

In other scenarios, the obtained dictionary has one more filed called ‘layers’ which is also
a dictionary type. The ‘layers’ takes the ID of each layer as the key, and its value is one
dictionary which contains 'name' (name of layer), 'operation' (operator), 'target' (execution

device), 'time'(time-consuming of this layer). Example is as follows:

{
'total_time', 4568,
'layers', {
'0": {
'name’: 'convolution0',
'operation': 'ConvRelu',
'target': 'NPU',
'time'": 362
§
"' {
'name': 'convolutionl’,
'operation': 'ConvRelu',
'target': 'NPU',
'time": 158
§
H
¥

The sample code is as follows:

# Evaluate model performance

For tflite/mobilenet vl in example directory, the performance evaluation results are printed as

follows(different version of toolkit may be slightly different from the result.):




Performance

#it## The performance result is just for debugging, ####

#it# may worse than actual performance! ittt
Layer ID Name Operator
0 InputOperator:input InputOperator
1 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_0/Relu6 ConvClip
2 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 1_depthwise/Relu6 ConvClip
3 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 1 pointwise/Relu6 ConvClip
4 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_2_depthwise/Relu6 ConvClip
5 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 2 pointwise/Relu6 ConvClip
6 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 3_depthwise/Relu6 ConvClip
7 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 3 pointwise/Relu6 ConvClip
8 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 4 depthwise/Relu6 ConvClip
9 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 4 pointwise/Relu6 ConvClip
10 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_5_depthwise/Relu6 ConvClip
11 Conv:FAF MobilenetV1/MobilenetV1/Conv2d 5 pointwise/Relu6 ConvClip
12 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 6_depthwise/Relu6 ConvClip
13 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 6 pointwise/Relu6 ConvClip
14 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 7 depthwise/Relu6 ConvClip
15 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_7 pointwise/Relu6 ConvClip
16 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 8 depthwise/Relu6 ConvClip
17 Conv:FAF MobilenetV1/MobilenetV1/Conv2d_8 pointwise/Relu6 ConvClip
18 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 9 depthwise/Relu6 ConvClip
19 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 9 pointwise/Relu6 ConvClip
20 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_10_depthwise/Relu6 ConvClip
21 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Relu6 ConvClip
22 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_11_depthwise/Relué ConvClip
23 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6 ConvClip
24 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_12_depthwise/Relu6é ConvClip
25 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d 12 pointwise/Relu6 ConvClip
26 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_13_depthwise/Relu6 ConvClip
27 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_13_pointwise/Relu6 ConvClip
28 Conv:MobilenetV1/Logits/AvgPool 1a/AvgPool Conv
29 Conv:MobilenetV1/Logits/Conv2d_lc 1x1/BiasAdd Conv
30 Softmax:MobilenetV 1/Predictions/Reshape 1 Softmax
31 Reshape:MobilenetV 1/Logits/SpatialSqueeze Reshape
32 OutputOperator:MobilenetV 1/Predictions/Reshape 1 OutputOperator

Total Time(us): 6038

FPS: 165.62

3.5.10 Evaluating memory usage
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API

eval_ memory




Description | Fetch memory usage when model is running on hardware platform.
Model must run on RK3566 or RK3568 which connected to PC.

Parameter is_print: Whether to print performance evaluation results in the canonical format. The
default value is True.

Return memory_detail: Detail information of memory usage. Data format is dictionary.

Value Data shows as below:

{
'total_weight_allocation': 4312608

'total_internal_allocation': 1756160,
'total_model allocation': 6068768

}

® The ‘total weight allocation’ represents the memory footprint of the weights in the
model.

® The ‘total internal allocation’ represents the memory usage of the internal tensor in
the model.

® The ‘total model allocation’ represents the memory footprint of the model, that is,

the sum of the weight and the memory footprint of the internal tensor.

The sample code is as follows:

# eval memory usage

For tflite/mobilenet v1 in examples directory, the memory usage when model running on RK3566 is

printed as follows:

Memory Profile Info Dump

NPU model memory detail(bytes):

Total Weight Memory: 4.11 MiB
Total Internal Tensor Memory: 1.67 MiB
Total Memory: 5.79 MiB

INFO: When evaluating memory usage, we need consider




the size of model, current model size is: 4.33 MiB

3.5.11 Get SDK version

API get sdk_version

Description | Get API version and driver version of referenced SDK.
Note: Before we use this interface, we must load model and initialize runtime first. And

this API can only used on RK3566 / RK3568.

Parameter None

Return sdk_version: API and driver version. Data type is string.

Value

The sample code is as follows:

# Get SDK version

The SDK version looks like below:

RKNN VERSION:
RKNNAPI:  API: 1.6.1 (de5c7ec build: 2021-04-25 10:21:45)
RKNNAPI:  DRV: 1.6.1 (de5c7ec build: 2021-04-25 10:14:11)

3.5.12 Hybrid Quantization

Not supported yet.

3.5.12.1 hybrid_quantization_step1

When using the hybrid quantization function, the main interface called in the first phase is

hybrid quantization_stepl, which is used to generate the temporary model file ({model name}.model),




the data file ({model name}.data), and the quantization configuration file ({model name}.quantization.

cfg). Interface details are as follows:

API hybrid_quantization_step1

Description | Corresponding temporary model files, data files, and quantization profiles are generated

according to the loaded original model.

Parameter dataset: A input data set for rectifying quantization parameters. Currently supports text file
format, the user can place the path of picture( jpg or png ) or npy file which is used for
rectification. A file path for each line. Such as:

ajpg

b.jpg

or

a.npy

b.npy

proposal: Generate hybrid quantization config suggestions.

Return 0: success

Value -1: failure

The sample code is as follows:

# Call hybrid_quantization_stepl to generate quantization config

3.5.12.2 hybrid_quantization_step2

When using the hybrid quantization function, the primary interface for generating a hybrid quantized

RKNN model phase call is hybrid quantization step2. The interface details are as follows:

API hybrid_quantization_step2

Description | The temporary model file, the data file, the quantization profile, and the correction data set




are received as inputs, and the hybrid quantized RKNN model is generated.

Parameter model _input: The temporary model file generated in the first step, which is shaped like

"{model name}.model". The data type is a string. Required parameter.

data_input: The model data file generated in the first step, which is shaped like

"{model name}.data". The data type is a string. Required parameter.

model quantization cfg: The modified model quantization profile, whick is shaped like

"{model name}.quantization.cfg". The data type is a string. Required parameter.

Return 0: success

Value -1: failure

The sample code is as follows:

# Call hybrid quantization step2 to generate hybrid quantized RKNN model

ret = rknn.hybrid quantization_step2(
model input="./ssd_mobilenet v2.model',
data_input='"./ssd_mobilenet v2.data',
model quantization_cfg="./ssd_mobilenet v2.quantization.cfg',

3.5.13 Quantitative accuracy analysis

The function of this interface is inference with quantized model and generate outputs of each layers

for quantitative accuracy analysis.

API accuracy_analysis

Description | Inference with quantized model and generate snapshot, that is dump tensor data of each
layers. It will dump a snapshot of both data types include fp32 & qnt for calculate
quantitative error.

Note:

1. this interface can only be called after build or hybrid quantization_step2, and

the original model should be a non-quantized model, otherwise the call will fail.




2. The quantization method used by this interface is consistent with the setting in
config.
Parameter inputs: the path list of image (jpg/png/bmp/npy).
output dir: output directory, all snapshot data will stored here. (default is directory name
‘snapshot”)
If the target is not set, the following content will be output under ‘output dir’:
® Directory entire qnt: Save the results of each layer when the entire quantitative
model is fully run (The output has been converted to float32).
® Directory fp32: Save the results of each layer when the entire floating-point model is
completely run down.
® order.txt: Record the order of each layout output.
calc_qnt error: whether to calculate quantitative error. (default is True)
If set it to True, the error analysis.txt file will be generated in the current directory, it
record the cosine distance (entire_error and per layer error) between each layer result and
the floating-point model during the complete calculation of the quantized model. The
different of entire error/per layer error is the input of each layer is come from the
quantization model or floating-point mode.
Return 0: success
Value -1: failure

The sample code is as follows:

# Create RKNN object
rknn = RKNN(verbose=True)

print('--> config model')
rknn.config(mean values=[128, 128, 128], std_values=[128, 128, 128], )
print(‘done')

# Load model
print('--> Loading model')




ret = rknn.load_tensorflow(tf pb='mobilenet v1.pb',
inputs=['input'],
outputs=["MobilenetV 1/Logits/SpatialSqueeze'],
input size list=[[1, 224, 224, 3]])
if ret 1= 0:
print('Load mobilenet vl failed!")
exit(ret)
print('done")

# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='dataset.txt")
if ret !=0:
print('build mobilenet vl failed!")
exit(ret)
print(‘done')

print('--> Accuracy analysis')
rknn.accuracy analysis(inputs=['./dog_224x224.jpg'], output_dir=None)

3.5.14 Register Custom OP

Not supported yet.

3.5.15 List Devices

API list_devices
Description | List connected RK3566 / RK3568.
Note:
There are currently two device connection modes: ADB and NTB. RK3566 / RK3568 support
both ADB and NTB. Make sure their modes are the same when connecting multiple devices
Parameter None
Return Return adb_devices list and ntb_devices list. If there are no devices connected to PC, it will
Value return two empty list.

The sample code is as follows:




The devices list looks like below:




	1Overview
	1.1Main function description
	1.2Applicable chip model
	1.3Applicable Operating System

	2Requirements/Dependencies
	3User Guide
	3.1Installation
	3.1.1Install by pip command
	3.1.2Install by the Docker Image

	3.2Usage of RKNN-Toolkit2
	3.2.1Scenario 1: Inference for Simulation on PC
	3.2.1.1run the non-RKNN model

	3.2.2Scenario 2: Run on Rockchip NPU connected to the P
	3.2.2.1run the non-RKNN model
	3.2.2.2run the RKNN model
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