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1 Overview

1.1 Main function description

RKNN-Toolkit2 is a development kit that provides users with model conversion, inference and

performance evaluation on PC and Rockchip NPU platforms. Users can easily complete the following

functions through the Python interface provided by the tool:

1） Model conversion: support to convert Caffe / TensorFlow / TensorFlow Lite / ONNX / Darknet

/ PyTorch model to RKNN model, support RKNN model import/export, which can be used on

Rockchip NPU platform later.

2） Quantization: support to convert float model to quantization model, currently support quantized

methods including asymmetric quantization (asymmetric_quantized-8,

asymmetric_quantized-16). and support hybrid quantization. Asymmetric_quantized-16 and

hybrid quantization not supported yet.

3） Model inference: Able to simulate Rockchip NPU to run RKNN model on PC and get the

inference result. This tool can also distribute the RKNN model to the specified NPU device to

run, and get the inference results.

4） Performance evaluation: distribute the RKNN model to the specified NPU device to run, and

evaluate the model performance in the actual device.

5） Memory evaluation: Evaluate memory consumption at runtime of the model. When using this

function, the RKNN model must be distributed to the NPU device to run, and then call the

relevant interface to obtain memory information.

6） Quantitative error analysis: This function will give the Euclidean or cosine distance of each

layer of inference results before and after the model is quantized. This can be used to analyze

how quantitative error occurs, and provide ideas for improving the accuracy of quantitative

models.

Note: Some features are limited by the operating system or chip platform and cannot be used on
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some operating systems or platforms. The feature support list of each operating system (platform) is as

follows:

Ubuntu 18.04 Windows 7/10 Debian 9.8 / 10

(ARM 64)

MacOS Mojave /

Catalina

Model conversion yes

Quantization yes

Model inference yes

Performance

evaluation

yes

Memory

evaluation

yes

Multiple inputs

Batch inference

List devices yes

Query SDK

version

yes

Quantitative error

analysis

yes

Visualization

Model

optimization level

yes

1.2 Applicable chip model

 RK3566

 RK3568
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1.3 Applicable Operating System

RKNN Toolkit2 is a cross-platform development kit. The supported operating systems are as

follows:

 Ubuntu: 18.04 (x64) or later



4

2 Requirements/Dependencies

It is recommended to meet the following requirements in the operating system environment:

Table 1 Operating system environment

Operating system version Ubuntu18.04(x64)or later

Python version 3.6

Python library

dependencies

numpy==1.16.6

onnx==1.7.0

onnxoptimizer==0.1.0

onnxruntime==1.7.0

tensorflow==1.14.0

tensorboard==1.14.0

protobuf==3.12.0

torch==1.6.0

torchvision==0.7.0

mxnet==1.7.0

psutil==5.6.2

ruamel.yaml==0.15.81

scipy==1.2.1

tqdm==4.27.0

requests==2.21.0

tflite==2.3.0

opencv-python==4.4.0.46

PuLP==2.4

Note:

1. This document mainly uses Ubuntu 18.04 / Python3.6 as an example. For other operating

systems, please refer to the corresponding quick start guide:

<Rockchip_Quick_Start_RKNN_Toolkit2_EN.pdf>.
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3 User Guide

3.1 Installation

There are two ways to install RKNN-Toolkit2: one is through the Python package installation and

management tool pip, the other is running docker image with full RKNN-Toolkit2 environment. The

specific steps of the two installation ways are described below.

3.1.1 Install by pip command

1. Create virtualenv environment. If there are multiple versions of the Python environment in the

system, it is recommended to use virtualenv to manage the Python environment.

sudo apt install virtualenv
sudo apt-get install python3 python3-dev python3-pip
sudo apt-get install libxslt1-dev zlib1g zlib1g-dev libglib2.0-0 \
libsm6 libgl1-mesa-glx libprotobuf-dev gcc

virtualenv -p /usr/bin/python3 venv
source venv/bin/activate

2. Install dependent libraries:

pip3 install -r doc/requirements.txt

Note: RKNN-Toolkit2 itself does not rely on opencv-python, but the example will use this

library to load image, so the library is also installed here.

3. Install RKNN-Toolkit2

pip install package/rknn_toolkit2*.whl

Please select corresponding installation package (located at the packages/ directory) according to

different python versions and processor architectures:

 Python3.6 for x86_64: rknn_toolkit2-1.0.0-cp36-cp36m-linux_x86_64.whl
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3.1.2 Install by the Docker Image

In docker folder, there is a Docker image that has been packaged for all development requirements,

Users only need to load the image and can directly use RKNN-toolkit2, detailed steps are as follows:

1. Install Docker

Please install Docker according to the official manual:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Load Docker image

Execute the following command to load Docker image:

docker load --input rknn-toolkit2-1.0.0-docker.tar.gz

After loading successfully, execute "docker images" command and the image of rknn-toolkit2

appears as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
rknn-toolkit2 1.0.0 4f6bae6686d8 1 hours ago 4.13GB

3. Run image

Execute the following command to run the docker image. After running, it will enter the bash

environment.

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit2:1.0.0 /bin/bash

If you want to map your own code, you can add the "-v <host src folder>:<image dst folder>"

parameter, for example:

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v /home/rk/test:/test
rknn-toolkit2:1.0.0 /bin/bash

4. Run demo

cd /example/tflite/mobilenet_v1
python test.py

https://docs.docker.com/install/linux/docker-ce/ubuntu/
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3.2 Usage of RKNN-Toolkit2

Next, the use process of RKNN Toolkit2 under each use scenario will be given in detail.

3.2.1 Scenario 1: Inference for Simulation on PC

In this scenario, RKNN Toolkit2 runs on the PC, and runs the model through the simulator.

Depending on the type of model, this scenario can be divided into two sub-scenarios: one scenario is

that the model is a non-RKNN model, i.e. Caffe, TensorFlow, TensorFlow Lite, ONNX, DarkNet,

PyTorch model, and the other scenario is that the model is an RKNN model which is a proprietary model

of Rockchip with the file suffix "rknn".

Note: Simulator only supported on x86_64 Linux.

3.2.1.1 run the non-RKNN model

When running a non-RKNN model, the RKNN-Toolkit2 usage flow is shown below:



8

Start

Create RKNN object to initialize RKNN 
SDK environment

Call config interface to set pre-processing 
parameters of model

Call load_caffe, load_tensorflow, 
load_tflite, load_onnx, load_darknet, 
load_pytorch, load_mxnet interface to 

load original Caffe, TensorFlow, 
TensorFlow Lite, ONNX, Darknet, Pytorch 

or MXNet model

Call build interface to build RKNN model

Call export_rknn 
interface to export 

RKNN model

Call inference interface to 
perform inference with input 
to get results

Call eval_perf interface to 
evaluate performance of model to 
get the running time of each layer 
and total running time of model

Call init_runtime interface 
to initialize the runtime 

environment

End

Call release interface to release RKNN 
object

Call eval_memory interface 
to get memory useage when 
model running.

Figure 1 Usage flow of RKNN-Toolkit2 when running a non-RKNN model on PC

Note:

1. The above steps should be performed in order.

2.The model exporting step marked in the blue box is not necessary. If you exported, you can use

load_rknn to load it later on.

3. The order of model inference, performance evaluation and memory evaluation steps marked in

red box is not fixed, it depends on the actual demand.

4. Only when the target hardware platform is Rockchip NPU, we can call eval_perf / eval_memory

interface.
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3.2.2 Scenario 2: Run on Rockchip NPU connected to the PC.

Rockchip NPU platforms currently supported by RKNN Toolkit2 include RK3566 / RK3568.

In this Scenario, In this scenario, RKNN Toolkit2 runs on the PC and connects to the NPU device

through the PC's USB. RKNN Toolkit2 transfers the RKNN model to the NPU device to run, and then

obtains the inference results, performance information, etc. from the NPU device

First, we need to complete the following two steps:

1. Make sure the USB OTG of development board is connected to PC, and call list_devices interface

will show the device. More information about "list_devices" interface can see Scction 3.5.15.

2. "Target" parameter and "device_id" parameter need to be specified when calling "init_runtime"

interface to initialize the runtime environment, where "target" indicates the type of hardware, optional

values are "rk3566" and "rk3568". When multiple devices are connected to PC, "device_id" parameter

needs to be specified. It is a string which can be obtained by calling "list_devices" interface, for example:

all device(s) with adb mode:
VD46C3KM6N

Runtime initialization code is as follows:

# RK3566
ret = init_runtime(target='rk3366', device_id='VGEJY9PW7T')

# RK3568
ret = init_runtime(target='rk3568', device_id='515e9b401c060c0b')

3.2.2.1 run the non-RKNN model

If the model is a non-RKNN model (Caffe, TensorFlow, TensorFlow Lite, ONNX, DarkNet,

PyTorch), the usage flow and precautions of RKNN-Toolkit2 are the same as the sub-scenario 1 of the

scenario 1(see Section 3.2.1.1).
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3.2.2.2 run the RKNN model

When running an RKNN model, users do not need to set model pre-processing parameters, nor do

they need to build an RKNN model, the usage flow is shown in the following figure.

Call load_rknn interface to load RKNN 
model

Call init_runtime interface to initialize the 
runtime environment

Start

Create RKNN object to initialize RKNN 
SDK environment

End

Call inference interface to 
perform inference with 

input to get results

Call eval_perf interface to evaluate 
performance of model to get the 

running time of each layer and total 
running time of model

Call release interface to release RKNN 
object

Call eval_memory interface 
to get the memory usage 

when model running.

Figure 2 Usage flow of RKNN-Toolkit2 when running an RKNN model on PC

Note:

1. The above steps should be performed in order.

2. The order of model inference, performance evaluation and memory evaluation steps marked in

red box is not fixed, it depends on the actual demand.

3. We can call inference / eval_perf / eval_memory only when the target is hardware platform.

4. The import method through load_rknn is only used for the use of hardware platform-related

functions, and functions such as accuracy_analysis cannot be used.
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3.2.3 Scenario 3: Inference on RK356x Linux development board

Not supported yet.

In this scenario, RKNN-Toolkit2 is installed in RK356x Linux system directly. The built or imported

RKNN model runs directly on RK356x to obtain the actual inference results or performance information

of the model.

For RK356x Linux development board, the usage flow of RKNN-Toolkit2 depends on the type of

model. If the model is a non-RKNN model, the usage flow is the same as that in the sub-scenario 1 of

scenario 1(see Section 3.2.1.1), otherwise, please refer to the usage flow in the sub-scenario 2 of

scenario1(see Section 3.2.2.2).

3.3 Hybrid Quantization

Not supported yet.

The quantization feature can ensure the accuracy of model based on improved model inference

speed. But for some models, the accuracy has dropped a bit. In order to better balance performance and

accuracy, we add new feature hybrid quantization. Users can decide which layers to quantize or not

manually, the quantization parameters also can been modified.

Note:

1. The examples/common_function_demos directory provides a hybrid quantization example

named hybrid_quantization. Users can refer to this example for hybrid quantification practice.

3.3.1 Instructions of hybrid quantization

Currently, RKNN Toolkit2 has three kind of ways to use hybrid quantization:

1. Convert quantized layer to non-quantized (e.g. float16) layer. Due to the low non-quantized

computing power on the NPU, the inference speed will be reduced.
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3.3.2 Hybrid quantization profile

When using the hybrid quantization feature, the first step is to generate a hybrid quantization profile,

which is briefly described in this section.

When the hybrid quantization interface hybrid_quantization_step1 is called, a configuration file of

{model_name}.quantization.cfg is generated in the current directory. The configuration file format is as

follows:

custom_quantize_layers: {}
quantize_parameters:

FeatureExtractor/MobilenetV2/Conv/BatchNorm/batchnorm/add_1:0:
qtype: asymmetric_quantized
qmethod: layer
dtype: int8
min:
- 0.0
max:
- 6.0
scale:
- 0.023529411764705882
zero_point:
- -128
ori_min:
- -13.971162796020508
ori_max:
- 22.79466438293457

……

The first line of the body of the configuration file is a dictionary of customized quantize layers, add

the layer names and their corresponding quantized type (choose from float16 / int16) to be changed to

customized quantize layers.

Next is the quantization parameter of each operand in the model, and each operand is a dictionary.

The key of each dictionary is tensor_name, the value of dictionary is quantization parameter, if it is not

quantized, the "dtype" value is float16.

3.3.3 Usage flow of hybrid quantization

When using the hybrid quantization function, it can be done in four steps.
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Step1, load the original model and generate a quantize configuration file, a model structure file and a

model weight bias file. The specific interface call process is as follows:

Start

Create RKNN object to initialize RKNN

environment

Call config interface to set pre-processing

parameters of model

Call load_caffe / load_tensorflow /

load_tflite / load_onnx / load_darknet /

load_pytorch / load_mxnet interface to load

original Caffe / TensorFlow / TensorFlow Lite

/ ONNX / DarkNet / PyTorch / MXNet model

Call hybrid_quantization_step1 interface to

generate quantization

profile({model_name}.quantization.cfg),

temporary model file({model_name}.model),

data file({model_name}.data)

Call release interface to release RKNN object

End

Figure 3 call process of hybrid quantization step 1

Step 2, Modify the quantization configuration file generated in the first step.

 If some quantization layers is changed to a non-quantization layer, find the output operand of

layer that is not to be quantized, and add these operands name and float16 to

custom_quantize_layers, such as "<operands name>: float16".

Step 3, generate hybrid quantized RKNN model. The specific interface call flow is as follows:
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Start

Create RKNN object to initialize 
RKNN SDK environment

Call config interface to set pre-
processing parameters of model

Call hybrid_quantization_step2 
interface to build hybrid quantized 

RKNN model

Call release interface to release 
RKNN object

End

Call export_rknn interface to 
export RKNN model

Figure 4 call process of hybrid quantization step 3

Step 4, use the RKNN model generated in the previous step to inference.

3.4 Example

The following is the sample code for loading TensorFlow Lite model (see the

example/tflite/mobilenet_v1 directory for details), if it is executed on PC, the RKNN model will run on

the simulator.

import numpy as np
import cv2
from rknn.api import RKNN

def show_outputs(outputs):
output = outputs[0][0]
output_sorted = sorted(output, reverse=True)
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
for i in range(5):

value = output_sorted[i]
index = np.where(output == value)
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for j in range(len(index)):
if (i + j) >= 5:

break
if value > 0:

topi = '{}: {}\n'.format(index[j], value)
else:

topi = '-1: 0.0\n'
top5_str += topi

print(top5_str)

if __name__ == '__main__':

# Create RKNN object
rknn = RKNN()

# pre-process config
print('--> config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128])
print('done')

# Load tensorflow model
print('--> Loading model')
ret = rknn.load_tflite(model='mobilenet_v1_1.0_224.tflite')
if ret != 0:

print('Load mobilenet_v1 failed!')
exit(ret)

print('done')

# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:

print('Build mobilenet_v1 failed!')
exit(ret)

print('done')

# Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn('./mobilenet_v1.rknn')
if ret != 0:

print('Export mobilenet_v1.rknn failed!')
exit(ret)

print('done')

# Set inputs
img = cv2.imread('./dog_224x224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)
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# init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:

print('Init runtime environment failed')
exit(ret)

print('done')

# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
print('done')

rknn.release()

Where dataset.txt is a text file containing the path of the test image. For example, if a picture of

dog_224x224.jpg in the example/tflite/mobilenet_v1 directory, then the corresponding content in

dataset.txt is as follows:

dog_224x224.jpg

When performing model inference, the result of this demo is as follows:

-----TOP 5-----
[156]: 0.8544921875
[155]: 0.080322265625
[205]: 0.0129241943359375
[284]: 0.0084075927734375
[194]: 0.0025787353515625

3.5 RKNN-Toolkit2 API description

3.5.1 RKNN object initialization and release

The initialization/release function group consists of API interfaces to initialize and release the

RKNN object as needed. The RKNN() must be called before using all the API interfaces of

RKNN-Toolkit2, and call the release() method to release the object when task finished.

When the RKNN object is initing, the users can set verbose and verbose_file parameters, used to show

detailed log information of model loading, building and so on. The data type of verbose parameter is bool.

If the value of this parameter is set to True, the RKNN Toolkit2 will show detailed log information on
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screen. The data type of verbose_file is string. If the value of this parameter is set to a file path, the

detailed log information will be written to this file (the verbose also need be set to True).

The sample code is as follows:

# Show the detailed log information on screen, and saved to
# mobilenet_build.log
rknn = RKNN(verbose=True, verbose_file='./mobilenet_build.log')
# Only show the detailed log information on screen.
rknn = RKNN(verbose=True)
…
rknn.release()

3.5.2 RKNN model configuration

Before the RKNN model is built, the model needs to be configured first through the config interface.

API config

Description Set model parameters

Parameter batch_size: The size of each batch of data sets. The default value is 100. When

quantifying, the amount of data to imported in each batch will be determined according to

this parameter to correct the quantization results.

mean_values: The mean values of the input. The parameter format is a list. The list

contains one or more mean sublists. The multi-input model corresponds to multiple

sublists. The length of each sublist is consistent with the number of channels of the input.

For example, if the parameter is [[128,128,128]], it means an input subtract 128 from the

values of the three channels. If quant_img_RGB2BGR is set to True, the RGB2BGR

conversion will be done first, and then the average value will be subtracted.

std_values: The normalized value of the input. The parameter format is a list. The list

contains one or more normalized value sublists. The multi-input model corresponds to

multiple sublists. The length of each sublist is consistent with the number of channels of

the input. For example, if the parameter is [[128,128,128]], it means the value of the three
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channels of an input minus the average value and then divide by 128. If

quant_img_RGB2BGR is set to True, the RGB2BGR conversion will be performed first,

followed by subtracting the mean value and dividing by the normalized value.

epochs: Number of iterations in quantization. Quantization parameter calibration is

performed with specified data at each iteration. Default value is -1, in this situation, the

number of iteration is automatically calculated based on the amount of data in the dataset.

Not support yet.

quant_img_RGB2BGR: Indicates whether the RGB2BGR operation needs to be done first

when loading the quantized image. The default value is False. If there are multiple inputs,

the corresponding parameters for each input is split with ',', such as [True, True, False].

This configuration is generally used on the Caffe model. Most of the Caffe model training

will perform RGB2BGR conversion on the dataset image firstly. At this time, the

configuration needs to be set to True.

In addition, this configuration is only valid for the quantized image format of

jpg/jpeg/png/bmp. This configuration is ignored when the npy format is read. Therefore,

when the model input is BGR, npy also needs to be in BGR format.

This configuration is only used to read the quantize image in the quantization stage,

and will not be recorded in the final RKNN model. Therefore, if the input of the

model is BGR, you need to ensure that the imported image data is also in BGR

format before calling the inference of the toolkit or the run function of the C-API.

quantized_dtype: Quantization type, the quantization types currently supported are

asymmetric_quantized-8, asymmetric_quantized-16. The default value is

asymmetric_quantized-8. asymmetric_quantized-16 is not supported yet.

quantized_algorithm: The quantization algorithm used when calcaulating the quantization

parameters of each layer. Currently support: normal, mmse. Default is normal.
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The characteristic of normal quantization algorithm is fast. The recommended

quantization data is generally about 20-100 pieces. with more data, the accuracy may not

be further improved.

The mmse quantization algorithm is slower due to the violent iteration method, but usually

has higher accuracy than normal. The recommended quantization data is generally about

20-50 pieces. Users can also increase or decrease the amount of data appropriately

according to the length of the quantization time.

mmse_epoch: mmse epochs, default is 3. The more iterations of MMSE quantization

algorithm, the higher quantization accuracy may be obtained.

quantized_method: Currently support layer or channel, That is each layer has only one set

of quantization parameters or each channel of weight has its own set of quantization

parameters. Usually the channel will be more accurate than the layer, default is layer.

optimization_level: Model optimization level. By modifying the model optimization level,

you can turn off some or all of the optimization rules used in the model conversion

process. The default value of this parameter is 3, and all optimization options are turned

on. When the value is 2 or 1, turn off some optimization options that may affect the

accuracy of some models. Turn off all optimization options when the value is 0.

target_platform: Specify which target chip platform the RKNN model is based on.

RK3566 and RK3568 are currently supported.

custom_string: Add custom string information to rknn model, then can query the

information at runtime.

Return

Value

None

The sample code is as follows:

# model config
rknn.config(mean_values=[[103.94, 116.78, 123.68]],

std_values=[[58.82, 58.82, 58.82]],
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quant_img_RGB2BGR=True, target_platform='rk3566')

3.5.3 Loading non-RKNN model

RKNN-Toolkit2 currently supports load non-RKNN models of Caffe, TensorFlow, TensorFlow Lite,

ONNX, DarkNet, PyTorch. There are different calling interfaces when loading models, the loading

interfaces are described in detail below.

3.5.3.1 Loading Caffe model

API load_caffe

Description Load Caffe model

Parameter model: The path of Caffe model structure file (suffixed with ".prototxt" ).

proto: Caffe model format (valid value is 'caffe' or 'lstm_caffe'). Plaese use 'lstm_caffe'

when the model is RNN model. 'lstm_caffe' is not supported yet.

blobs: The path of Caffe model binary data file (suffixed with ".caffemodel"). The value

can be None, RKNN Toolkit2 will randomly generate parameters such as weights.

inputname: When the caffe model has multiple inputs, you can specify the order of the

input layer names through this parameter, such as ['input1','input2','input3'],note that the

name needs to be consistent with the model input name；It can also be set default. The

sequence is automatically given by the caffe model file (file suffix with .prototxt).

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the mobilenet_v2 Caffe model in the current path
ret = rknn.load_caffe(model='./mobilenet_v2.prototxt',

proto='caffe',
blobs='./mobilenet_v2.caffemodel')
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3.5.3.2 Loading TensorFlow model

API load_tensorflow

Description Load TensorFlow model

Parameter tf_pb: The path of TensorFlow model file (suffixed with ".pb").

inputs: The input node of model, input with multiple nodes is supported now. All the input

node string are placed in a list.

input_size_list: The size and number of channels of the image corresponding to the input

node. As in the example of mobilenet_v1 model, the input_size_list parameter should be

set to [[224,224,3]].

outputs: The output node of model, output with multiple nodes is supported now. All the

output nodes are placed in a list.

predef_file: In order to support some controlling logic, a predefined file in npz format

needs to be provided. This predefined fie can be generated by the following function call:

np.savez('prd.npz', [placeholder name]=prd_value).If there are / in placeholder name, use #

to replace. Not supported yet.

Return

value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load ssd_mobilenet_v1_coco_2017_11_17 TF model in the current path
ret = rknn.load_tensorflow(

tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',
inputs=['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0

/BatchNorm/batchnorm/mul_1'],
outputs=['concat', 'concat_1'],
input_size_list=[[300, 300, 3]])
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3.5.3.3 Loading TensorFlow Lite model

API load_tflite

Description Load TensorFlow Lite model.

Parameter model: The path of TensorFlow Lite model file (suffixed with ".tflite").

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the mobilenet_v1 TF-Lite model in the current path
ret = rknn.load_tflite(model = './mobilenet_v1.tflite')

3.5.3.4 Loading ONNX model

API load_onnx

Description Load ONNX model

Parameter model: The path of ONNX model file (suffixed with ".onnx")

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the arcface onnx model in the current path
ret = rknn.load_onnx(model = './arcface.onnx')

3.5.3.5 Loading DarkNet model

API load_darknet

Description Load DarkNet model

Parameter model: The path of DarkNet model structure file (suffixed with ".cfg").

weight: The path of weight file (suffixed with ".weight").
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Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the yolov3-tiny DarkNet model in the current path
ret = rknn.load_darknet(model = './yolov3-tiny.cfg',

weight= './yolov3.weights')

3.5.3.6 Loading PyTorch model

API load_pytorch

Description Load PyTorch model

Parameter model:The path of PyTorch model structure file (suffixed with ".pt"), and need a model in

the torchscript format. Required.

input_size_list:The size and number of channels of each input node. For example,

[[1,1,224,224],[1,3,224,224]] means there are two inputs. One of the input shapes is [1,1,

224, 224], and the other input shape is [1,3, 224, 224]. Required.

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the PyTorch model resnet18 in the current path
ret = rknn. load_pytorch(model = './resnet18.pt',

input_size_list=[[1,3,224,224]])

3.5.3.7 Loading MXNet model

Not support yet.

API load_mxnet

Description Load MXNet model
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Parameter symbol:Network structure file of MXNet model, suffixed with "json". Required.

params:Network parameters file of MXNet model, suffixed with "params". Required.

input_size_list:The size and number of channels of each input node. For example,

[[1,1,224,224],[1,3,224,224]] means there are two inputs. One of the input shapes is [1,1,

224, 224], and the other input shape is [1,3, 224, 224]. Required.

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

# Load the MXNet model resnext50 in the current path
ret = rknn.load_mxnet(symbol='resnext50_32x4d-symbol.json',

params='resnext50_32x4d-4ecf62e2.params',
input_size_list=[[1,3,224,224]])

3.5.4 Building RKNN model

API build

Description Build corresponding RKNN model according to imported model.

Parameter do_quantization: Whether to quantize the model, optional values are True and False.

dataset: A input data set for rectifying quantization parameters. Currently supports text file

format, the user can place the path of picture( jpg or png ) or npy file which is used for

rectification. A file path for each line. Such as:

a.jpg

b.jpg

or

a.npy

b.npy

If there are multiple inputs, the corresponding files are divided by space. Such as:
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a.jpg a2.jpg

b.jpg b2.jpg

or

a.npy a2.npy

b.npy b2.npy

Note: It is generally recommended to select the quantization image which is consistent

with the prediction scene.

rknn_batch_size: batch size of input, default is 1. If greater than 1, NPU can inference

multiple frames of input image or input data in one inference. For example, original input

of MobileNet is [1, 224, 224, 3], output shape is [1, 1001]. When rknn_batch_size is set to

4, the input shape of MobileNet becomes [4, 224, 224, 3], output shape becomes [4, 1001].

Note:

1. The adjustment of rknn_batch_size does not improve the performance of the

general model on the NPU, but it will significantly increase memory consumption

and increase the delay of single frame.

2. The adjustment of rknn_batch_size can reduce the consumption of the

ultra-small model on the CPU and improve the average frame rate of the

ultra-small model. (Applicable to the model is too small, CPU overhead is greater

than the NPU overhead)

3. The value of rknn_batch_size is recommended to be less than 32, to avoid the

memory usage is too large and the reasoning fails.

4. After the rknn_batch_size is modified, the shape of input and output will be

modified. So the inputs of inference should be set to correct size. It`s also needed

to process the returned outputs on post processing.

Not support yet.

Return 0: Build successfully
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value -1: Build failed

The sample code is as follows:

# Build and quantize RKNN model
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')

3.5.5 Export RKNN model

The RKNN model built by ‘build’ interface can be saved as a file, it can used to model deployment.

API export_rknn

Description Save RKNN model in the specified file (suffixed with ".rknn").

Parameter export_path: The path of generated RKNN model file.

Return

Value

0: Export successfully

-1: Export failed

The sample code is as follows:

# save the built RKNN model as a mobilenet_v1.rknn file in the current # path
ret = rknn.export_rknn(export_path = './mobilenet_v1.rknn')

3.5.6 Loading RKNN model

API load_rknn

Description Load RKNN model. The loading model is limited to connecting to the NPU hardware for

inference or performance data acquisition. It can not be used for simulator or accuracy

analysis.

Parameter path: The path of RKNN model file.

load_model_in_npu: Whether to load RKNN model in NPU directly. The path parameter

should fill in the path of the model in NPU. It can be set to True only when

RKNN-Toolkit2 run on RK356x Linux or NPU device(RK3566, rk3568) is connected.

Default value is False. Not supported yet.
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Return

Value

0: Load successfully

-1: Load failed

The sample code is as follows:

# Load the mobilenet_v1 RKNN model in the current path
ret = rknn.load_rknn(path='./mobilenet_v1.rknn')

3.5.7 Initialize the runtime environment

Before inference or performance evaluation, the runtime environment must be initialized. This

interface determines the type of runtime (hardware platform or software simulator).

API init_runtime

Description Initialize the runtime environment. Set the device information (hardware platform, device

ID). Determine whether to enable debug mode to obtain more detailed performance

information for performance evaluation.

Parameter target: Target hardware platform, now supports "RK3566", "RK3568". The default value is

"None", which indicates model runs on simulator.

device_id: Device identity number, if multiple devices are connected to PC, this parameter

needs to be specified which can be obtained by calling "list_devices" interface. The default

value is "None ".

perf_debug: Debug mode option for performance evaluation. In debug mode, the running

time of each layer can be obtained, otherwise, only the total running time of model can be

given. The default value is False.

eval_mem: Whether enter memory evaluation mode. If set True, the eval_memory

interface can be called later to fetch memory usage of model running. The default value is

False.

async_mode: Whether to use asynchronous mode. When calling the inference interface, it

involves setting the input picture, model running, and fetching the inference result. If the
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asynchronous mode is enabled, setting the input of the current frame will be performed

simultaneously with the inference of the previous frame, so in addition to the first frame,

each subsequent frame can hide the setting input time, thereby improving performance. In

asynchronous mode, the inference result returned each time is the previous frame. The

default value for this parameter is False.

Not Supported yet.

Return

Value

0: Initialize the runtime environment successfully

-1: Initialize the runtime environment failed

The sample code is as follows:

# Initialize the runtime environment
ret = rknn.init_runtime(target='rk3566', device_id='012345789AB')
if ret != 0:

print('Init runtime environment failed')
exit(ret)

3.5.8 Inference with RKNN model

This interface kicks off the RKNN model inference and get the result of inference.

API inference

Description Use the model to perform inference with specified input and get the inference result.

Detailed scenarios are as follows:

1. If RKNN Toolkit2 is running on PC and the target is set to Rockchip NPU when

initializing the runtime environment, the inference of model is performed on the specified

hardware platform.

2. If RKNN Toolkit2 is running on PC and the target is not set when initializing the

runtime environment, the inference of model is performed on the simulator.

Parameter inputs: Inputs to be inferred, such as images processed by cv2. The object type is ndarray

list.
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data_format: The shape format of input data. Optional values are "nchw", "nhwc". The

default value is 'nhwc'.

inputs_pass_through: Pass the input transparently to the NPU driver. In non-transparent

mode, the tool will reduce the mean, divide the variance, etc. before the input is passed to

the NPU driver; in transparent mode, these operations will not be performed. The value of

this parameter is an array. For example, to pass input0 and not input1, the value of this

parameter is [1, 0]. The default value is None, which means that all input is not

transparent.

Return

Value

results: The result of inference, the object type is ndarray list.

The sample code is as follows:

For classification model, such as mobilenet_v1, the code is as follows (refer to

example/tfilte/mobilenet_v1 for the complete code):

# Preform inference for a picture with a model and get a top-5 result
……
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
……

The result of top-5 is as follows:

-----TOP 5-----
[156]: 0.85107421875
[155]: 0.09173583984375
[205]: 0.01358795166015625
[284]: 0.006465911865234375
[194]: 0.002239227294921875

For object detection model, such as ssd_mobilenet_v1, the code is as follows (refer to

example/tensorflow/ssd_mobilenet_v1 for the complete code):

# Perform inference for a picture with a model and get the result of object
# detection
……
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outputs = rknn.inference(inputs=[image])
……

After the inference result is post-processed, the final output is shown in the following picture (the

color of the object border is randomly generated, so the border color obtained will be different each

time):

Figure 3 ssd_mobilenet_v1 inference result

3.5.9 Evaluate model performance

API eval_perf

Description Evaluate model performance.

Model must run on RK3566 or RK3568 which connected to PC.If setting perf_debug to

False when initializing runtime environment, the performance information is obtained

from hardware, which only contains the total running time of model. And if the
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perf_debug is set to True, the running time of each layer will also be captured in detail.

Return

Value

perf_result: Performance information. The object type is dictionary.

If running on device and set perf_debug to False when initializing the runtime

environment, the dictionary gives only one field ‘total_time’, example is as follows:

{
‘total_time’: 1000

}

In other scenarios, the obtained dictionary has one more filed called ‘layers’ which is also

a dictionary type. The ‘layers’ takes the ID of each layer as the key, and its value is one

dictionary which contains 'name' (name of layer), 'operation' (operator), 'target' (execution

device), 'time'(time-consuming of this layer). Example is as follows:

{
'total_time', 4568,
'layers', {

'0': {
'name': 'convolution0',
'operation': 'ConvRelu',
'target': 'NPU',
'time': 362

}
'1': {

'name': 'convolution1',
'operation': 'ConvRelu',
'target': 'NPU',
'time': 158

}
}

}

The sample code is as follows:

# Evaluate model performance
……
rknn.eval_perf(inputs=[image], is_print=True)
……

For tflite/mobilenet_v1 in example directory, the performance evaluation results are printed as

follows(different version of toolkit may be slightly different from the result.):
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===========================================================================

Performance

#### The performance result is just for debugging, ####

#### may worse than actual performance! ####

===========================================================================

Layer ID Name Operator Target Time(us)

0 InputOperator:input InputOperator CPU 14

1 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_0/Relu6 ConvClip NPU 316

2 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_1_depthwise/Relu6 ConvClip NPU 329

3 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_1_pointwise/Relu6 ConvClip NPU 510

4 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_2_depthwise/Relu6 ConvClip NPU 324

5 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_2_pointwise/Relu6 ConvClip NPU 192

6 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_3_depthwise/Relu6 ConvClip NPU 233

7 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_3_pointwise/Relu6 ConvClip NPU 227

8 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_4_depthwise/Relu6 ConvClip NPU 143

9 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_4_pointwise/Relu6 ConvClip NPU 132

10 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_5_depthwise/Relu6 ConvClip NPU 142

11 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_5_pointwise/Relu6 ConvClip NPU 193

12 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_6_depthwise/Relu6 ConvClip NPU 71

13 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_6_pointwise/Relu6 ConvClip NPU 99

14 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_7_depthwise/Relu6 ConvClip NPU 79

15 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_7_pointwise/Relu6 ConvClip NPU 171

16 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_8_depthwise/Relu6 ConvClip NPU 78

17 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_8_pointwise/Relu6 ConvClip NPU 196

18 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_9_depthwise/Relu6 ConvClip NPU 78

19 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_9_pointwise/Relu6 ConvClip NPU 195

20 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_10_depthwise/Relu6 ConvClip NPU 79

21 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Relu6 ConvClip NPU 170

22 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_11_depthwise/Relu6 ConvClip NPU 78

23 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6 ConvClip NPU 170

24 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_12_depthwise/Relu6 ConvClip NPU 62

25 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_12_pointwise/Relu6 ConvClip NPU 232

26 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_13_depthwise/Relu6 ConvClip NPU 169

27 Conv:FAF_MobilenetV1/MobilenetV1/Conv2d_13_pointwise/Relu6 ConvClip NPU 494

28 Conv:MobilenetV1/Logits/AvgPool_1a/AvgPool Conv NPU 182

29 Conv:MobilenetV1/Logits/Conv2d_1c_1x1/BiasAdd Conv NPU 206

30 Softmax:MobilenetV1/Predictions/Reshape_1 Softmax CPU 335

31 Reshape:MobilenetV1/Logits/SpatialSqueeze Reshape CPU 99

32 OutputOperator:MobilenetV1/Predictions/Reshape_1 OutputOperator CPU 40

Total Time(us): 6038

FPS: 165.62

===========================================================================

3.5.10 Evaluating memory usage

API eval_memory
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Description Fetch memory usage when model is running on hardware platform.

Model must run on RK3566 or RK3568 which connected to PC.

Parameter is_print: Whether to print performance evaluation results in the canonical format. The

default value is True.

Return

Value

memory_detail：Detail information of memory usage. Data format is dictionary.

Data shows as below：

{
'total_weight_allocation': 4312608
'total_internal_allocation': 1756160,
'total_model_allocation': 6068768

}

 The ‘total_weight_allocation’ represents the memory footprint of the weights in the

model.

 The ‘total_internal_allocation’ represents the memory usage of the internal tensor in

the model.

 The ‘total_model_allocation’ represents the memory footprint of the model, that is,

the sum of the weight and the memory footprint of the internal tensor.

The sample code is as follows:

# eval memory usage
……
memory_detail = rknn.eval_memory()
……

For tflite/mobilenet_v1 in examples directory, the memory usage when model running on RK3566 is

printed as follows:

=============================================
Memory Profile Info Dump

=============================================
NPU model memory detail(bytes):

Total Weight Memory: 4.11 MiB
Total Internal Tensor Memory: 1.67 MiB
Total Memory: 5.79 MiB

INFO: When evaluating memory usage, we need consider
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the size of model, current model size is: 4.33 MiB
=============================================

3.5.11 Get SDK version

API get_sdk_version

Description Get API version and driver version of referenced SDK.

Note: Before we use this interface, we must load model and initialize runtime first. And

this API can only used on RK3566 / RK3568.

Parameter None

Return

Value

sdk_version：API and driver version. Data type is string.

The sample code is as follows：

# Get SDK version
……
sdk_version = rknn.get_sdk_version()
……

The SDK version looks like below：

==============================================
RKNN VERSION:

RKNNAPI: API: 1.6.1 (de5c7ec build: 2021-04-25 10:21:45)
RKNNAPI: DRV: 1.6.1 (de5c7ec build: 2021-04-25 10:14:11)

==============================================

3.5.12 Hybrid Quantization

Not supported yet.

3.5.12.1 hybrid_quantization_step1

When using the hybrid quantization function, the main interface called in the first phase is

hybrid_quantization_step1, which is used to generate the temporary model file ({model_name}.model),
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the data file ({model_name}.data), and the quantization configuration file ({model_name}.quantization.

cfg). Interface details are as follows:

API hybrid_quantization_step1

Description Corresponding temporary model files, data files, and quantization profiles are generated

according to the loaded original model.

Parameter dataset: A input data set for rectifying quantization parameters. Currently supports text file

format, the user can place the path of picture( jpg or png ) or npy file which is used for

rectification. A file path for each line. Such as:

a.jpg

b.jpg

or

a.npy

b.npy

proposal: Generate hybrid quantization config suggestions.

Return

Value

0: success

-1: failure

The sample code is as follows:

# Call hybrid_quantization_step1 to generate quantization config
……
ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt')
……

3.5.12.2 hybrid_quantization_step2

When using the hybrid quantization function, the primary interface for generating a hybrid quantized

RKNN model phase call is hybrid_quantization_step2. The interface details are as follows:

API hybrid_quantization_step2

Description The temporary model file, the data file, the quantization profile, and the correction data set
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are received as inputs, and the hybrid quantized RKNN model is generated.

Parameter model_input: The temporary model file generated in the first step, which is shaped like

"{model_name}.model". The data type is a string. Required parameter.

data_input: The model data file generated in the first step, which is shaped like

"{model_name}.data". The data type is a string. Required parameter.

model_quantization_cfg: The modified model quantization profile, whick is shaped like

"{model_name}.quantization.cfg". The data type is a string. Required parameter.

Return

Value

0: success

-1: failure

The sample code is as follows:

# Call hybrid_quantization_step2 to generate hybrid quantized RKNN model
……
ret = rknn.hybrid_quantization_step2(

model_input='./ssd_mobilenet_v2.model',
data_input='./ssd_mobilenet_v2.data',
model_quantization_cfg='./ssd_mobilenet_v2.quantization.cfg',

)
……

3.5.13 Quantitative accuracy analysis

The function of this interface is inference with quantized model and generate outputs of each layers

for quantitative accuracy analysis.

API accuracy_analysis

Description Inference with quantized model and generate snapshot, that is dump tensor data of each

layers. It will dump a snapshot of both data types include fp32 & qnt for calculate

quantitative error.

Note:

1. this interface can only be called after build or hybrid_quantization_step2, and

the original model should be a non-quantized model, otherwise the call will fail.
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2. The quantization method used by this interface is consistent with the setting in

config.

Parameter inputs: the path list of image (jpg/png/bmp/npy).

output_dir: output directory, all snapshot data will stored here. (default is directory name

‘snapshot’)

If the target is not set, the following content will be output under ‘output_dir’:

 Directory entire_qnt: Save the results of each layer when the entire quantitative

model is fully run (The output has been converted to float32).

 Directory fp32: Save the results of each layer when the entire floating-point model is

completely run down.

 order.txt: Record the order of each layout output.

calc_qnt_error: whether to calculate quantitative error. (default is True)

If set it to True, the error_analysis.txt file will be generated in the current directory, it

record the cosine distance (entire_error and per_layer_error) between each layer result and

the floating-point model during the complete calculation of the quantized model. The

different of entire_error/per_layer_error is the input of each layer is come from the

quantization model or floating-point mode.

Return

Value

0: success

-1: failure

The sample code is as follows:

……

# Create RKNN object
rknn = RKNN(verbose=True)

print('--> config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], )
print('done')

# Load model
print('--> Loading model')
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ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',
inputs=['input'],
outputs=['MobilenetV1/Logits/SpatialSqueeze'],
input_size_list=[[1, 224, 224, 3]])

if ret != 0:
print('Load mobilenet_v1 failed!')
exit(ret)

print('done')

# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='dataset.txt')
if ret != 0:

print('build mobilenet_v1 failed!')
exit(ret)

print('done')

print('--> Accuracy analysis')
rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir=None)

……

3.5.14 Register Custom OP

Not supported yet.

3.5.15 List Devices

API list_devices

Description List connected RK3566 / RK3568.

Note:

There are currently two device connection modes: ADB and NTB. RK3566 / RK3568 support

both ADB and NTB. Make sure their modes are the same when connecting multiple devices

Parameter None

Return

Value

Return adb_devices list and ntb_devices list. If there are no devices connected to PC, it will

return two empty list.

The sample code is as follows：
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from rknn.api import RKNN

if __name__ == '__main__':
rknn = RKNN()
rknn.list_devices()
rknn.release()

The devices list looks like below：

*************************
all device(s) with adb mode:
VD46C3KM6N
*************************
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