dkm 0ece5fece4 add rknn-toolkit2-v0.6.0alpha
Change-Id: I201f8dc98e043801237641a8b966468330aa5764
2021-03-03 14:16:04 +08:00

82 lines
2.1 KiB
Python
Executable File

import numpy as np
import cv2
from rknn.api import RKNN
def show_outputs(outputs):
output = outputs[0].reshape(-1)
output_sorted = sorted(output, reverse=True)
top5_str = 'mobilenet_v2\n-----TOP 5-----\n'
for i in range(5):
value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):
if (i + j) >= 5:
break
if value > 0:
topi = '{}: {}\n'.format(index[j], value)
else:
topi = '-1: 0.0\n'
top5_str += topi
print(top5_str)
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN()
# pre-process config
print('--> config model')
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], reorder_channel=True)
print('done')
# Load tensorflow model
print('--> Loading model')
ret = rknn.load_caffe(model='./mobilenet_v2.prototxt',
proto='caffe',
blobs='./mobilenet_v2.caffemodel')
if ret != 0:
print('Load mobilenet_v2 failed! Ret = {}'.format(ret))
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
print('Build mobilenet_v2 failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn('./mobilenet_v2.rknn')
if ret != 0:
print('Export mobilenet_v2.rknn failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread('./goldfish_224x224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
print('done')
# perf
print('--> Begin evaluate model performance')
perf_results = rknn.eval_perf(inputs=[img])
print('done')
rknn.release()