[examples] refactor FAR computation to support long audio test (#64)
* add .gitattributes * add long wav * fix some bugs * updated lint error * back the hi_xiaowen/run.sh to the same * remove the space * better one * remove 'num_keyword' parameter * remove files * flask8 examine * override the score and compute_det file * remove defaultdict * remove import defaultdict
This commit is contained in:
parent
ff4b47f94d
commit
7d142b9528
@ -21,7 +21,7 @@ score_checkpoint=$dir/avg_${num_average}.pt
|
||||
download_dir=./data/local # your data dir
|
||||
|
||||
. tools/parse_options.sh || exit 1;
|
||||
|
||||
window_shift=50
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "Download and extracte all datasets"
|
||||
@ -100,12 +100,14 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
--test_data data/test/data.list \
|
||||
--batch_size 256 \
|
||||
--checkpoint $score_checkpoint \
|
||||
--score_file $result_dir/score.txt \
|
||||
--score_file $result_dir/score.txt \
|
||||
--num_workers 8
|
||||
|
||||
for keyword in 0 1; do
|
||||
python kws/bin/compute_det.py \
|
||||
--keyword $keyword \
|
||||
--test_data data/test/data.list \
|
||||
--window_shift $window_shift \
|
||||
--score_file $result_dir/score.txt \
|
||||
--stats_file $result_dir/stats.${keyword}.txt
|
||||
done
|
||||
@ -156,5 +158,4 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
--config $dir/config.yaml \
|
||||
--jit_model $dir/$jit_model \
|
||||
--onnx_model $dir/$onnx_model
|
||||
fi
|
||||
|
||||
fi
|
||||
@ -1,4 +1,5 @@
|
||||
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
||||
# 2022 Shaoqing Yu(954793264@qq.com)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -17,13 +18,18 @@ import json
|
||||
|
||||
|
||||
def load_label_and_score(keyword, label_file, score_file):
|
||||
# score_table: {uttid: [keywordlist]}
|
||||
score_table = {}
|
||||
with open(score_file, 'r', encoding='utf8') as fin:
|
||||
for line in fin:
|
||||
arr = line.strip().split()
|
||||
key = arr[0]
|
||||
score = float(arr[keyword + 1])
|
||||
score_table[key] = score
|
||||
current_keyword = arr[1]
|
||||
str_list = arr[2:]
|
||||
if int(current_keyword) == keyword:
|
||||
scores = list(map(float, str_list))
|
||||
if key not in score_table:
|
||||
score_table.update({key: scores})
|
||||
keyword_table = {}
|
||||
filler_table = {}
|
||||
filler_duration = 0.0
|
||||
@ -48,32 +54,47 @@ def load_label_and_score(keyword, label_file, score_file):
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='compute det curve')
|
||||
parser.add_argument('--test_data', required=True, help='label file')
|
||||
parser.add_argument('--keyword', type=int, default=0, help='score file')
|
||||
parser.add_argument('--keyword', type=int, default=0, help='keyword label')
|
||||
parser.add_argument('--score_file', required=True, help='score file')
|
||||
parser.add_argument('--step', type=float, default=0.01, help='score file')
|
||||
parser.add_argument('--step', type=float, default=0.01,
|
||||
help='threshold step')
|
||||
parser.add_argument('--window_shift', type=int, default=50,
|
||||
help='window_shift is used to skip the frames after triggered')
|
||||
parser.add_argument('--stats_file',
|
||||
required=True,
|
||||
help='false reject/alarm stats file')
|
||||
args = parser.parse_args()
|
||||
|
||||
window_shift = args.window_shift
|
||||
keyword_table, filler_table, filler_duration = load_label_and_score(
|
||||
args.keyword, args.test_data, args.score_file)
|
||||
print('Filler total duration Hours: {}'.format(filler_duration / 3600.0))
|
||||
|
||||
with open(args.stats_file, 'w', encoding='utf8') as fout:
|
||||
keyword_index = int(args.keyword)
|
||||
threshold = 0.0
|
||||
while threshold <= 1.0:
|
||||
num_false_reject = 0
|
||||
for key, score in keyword_table.items():
|
||||
if score < threshold:
|
||||
# transverse the all keyword_table
|
||||
for key, score_list in keyword_table.items():
|
||||
# computer positive test sample, use the max score of list.
|
||||
score = max(score_list)
|
||||
if float(score) < threshold:
|
||||
num_false_reject += 1
|
||||
num_false_alarm = 0
|
||||
for key, score in filler_table.items():
|
||||
if score >= threshold:
|
||||
num_false_alarm += 1
|
||||
false_reject_rate = num_false_reject / len(keyword_table)
|
||||
# transverse the all filler_table
|
||||
for key, score_list in filler_table.items():
|
||||
i = 0
|
||||
while i < len(score_list):
|
||||
if score_list[i] >= threshold:
|
||||
num_false_alarm += 1
|
||||
i += window_shift
|
||||
else:
|
||||
i += 1
|
||||
if len(keyword_table) != 0:
|
||||
false_reject_rate = num_false_reject / len(keyword_table)
|
||||
num_false_alarm = max(num_false_alarm, 1e-6)
|
||||
false_alarm_per_hour = num_false_alarm / (filler_duration / 3600.0)
|
||||
if filler_duration != 0:
|
||||
false_alarm_per_hour = num_false_alarm / \
|
||||
(filler_duration / 3600.0)
|
||||
fout.write('{:.6f} {:.6f} {:.6f}\n'.format(threshold,
|
||||
false_alarm_per_hour,
|
||||
false_reject_rate))
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
||||
# 2022 Shaoqing Yu(954793264@qq.com)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -27,7 +28,6 @@ from torch.utils.data import DataLoader
|
||||
from kws.dataset.dataset import Dataset
|
||||
from kws.model.kws_model import init_model
|
||||
from kws.utils.checkpoint import load_checkpoint
|
||||
from kws.utils.mask import padding_mask
|
||||
|
||||
|
||||
def get_args():
|
||||
@ -102,23 +102,25 @@ def main():
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
model = model.to(device)
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad(), open(args.score_file, 'w', encoding='utf8') as fout:
|
||||
score_abs_path = os.path.abspath(args.score_file)
|
||||
with torch.no_grad(), open(score_abs_path, 'w', encoding='utf8') as fout:
|
||||
for batch_idx, batch in enumerate(test_data_loader):
|
||||
keys, feats, target, lengths = batch
|
||||
feats = feats.to(device)
|
||||
lengths = lengths.to(device)
|
||||
mask = padding_mask(lengths).unsqueeze(2)
|
||||
logits = model(feats)
|
||||
logits = logits.masked_fill(mask, 0.0)
|
||||
max_logits, _ = logits.max(dim=1)
|
||||
max_logits = max_logits.cpu()
|
||||
num_keywords = logits.shape[2]
|
||||
logits = logits.cpu()
|
||||
for i in range(len(keys)):
|
||||
key = keys[i]
|
||||
score = max_logits[i]
|
||||
score = ' '.join([str(x) for x in score.tolist()])
|
||||
fout.write('{} {}\n'.format(key, score))
|
||||
score = logits[i][:lengths[i]]
|
||||
for keyword_i in range(num_keywords):
|
||||
keyword_scores = score[:, keyword_i]
|
||||
score_frames = ' '.join(['{:.6f}'.format(x)
|
||||
for x in keyword_scores.tolist()])
|
||||
fout.write('{} {} {}\n'.format(
|
||||
key, keyword_i, score_frames))
|
||||
if batch_idx % 10 == 0:
|
||||
print('Progress batch {}'.format(batch_idx))
|
||||
sys.stdout.flush()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user