* add .gitattributes * add long wav * fix some bugs * updated lint error * back the hi_xiaowen/run.sh to the same * remove the space * better one * remove 'num_keyword' parameter * remove files * flask8 examine * override the score and compute_det file * remove defaultdict * remove import defaultdict
102 lines
4.3 KiB
Python
102 lines
4.3 KiB
Python
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
|
# 2022 Shaoqing Yu(954793264@qq.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import json
|
|
|
|
|
|
def load_label_and_score(keyword, label_file, score_file):
|
|
# score_table: {uttid: [keywordlist]}
|
|
score_table = {}
|
|
with open(score_file, 'r', encoding='utf8') as fin:
|
|
for line in fin:
|
|
arr = line.strip().split()
|
|
key = arr[0]
|
|
current_keyword = arr[1]
|
|
str_list = arr[2:]
|
|
if int(current_keyword) == keyword:
|
|
scores = list(map(float, str_list))
|
|
if key not in score_table:
|
|
score_table.update({key: scores})
|
|
keyword_table = {}
|
|
filler_table = {}
|
|
filler_duration = 0.0
|
|
with open(label_file, 'r', encoding='utf8') as fin:
|
|
for line in fin:
|
|
obj = json.loads(line.strip())
|
|
assert 'key' in obj
|
|
assert 'txt' in obj
|
|
assert 'duration' in obj
|
|
key = obj['key']
|
|
index = obj['txt']
|
|
duration = obj['duration']
|
|
assert key in score_table
|
|
if index == keyword:
|
|
keyword_table[key] = score_table[key]
|
|
else:
|
|
filler_table[key] = score_table[key]
|
|
filler_duration += duration
|
|
return keyword_table, filler_table, filler_duration
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='compute det curve')
|
|
parser.add_argument('--test_data', required=True, help='label file')
|
|
parser.add_argument('--keyword', type=int, default=0, help='keyword label')
|
|
parser.add_argument('--score_file', required=True, help='score file')
|
|
parser.add_argument('--step', type=float, default=0.01,
|
|
help='threshold step')
|
|
parser.add_argument('--window_shift', type=int, default=50,
|
|
help='window_shift is used to skip the frames after triggered')
|
|
parser.add_argument('--stats_file',
|
|
required=True,
|
|
help='false reject/alarm stats file')
|
|
args = parser.parse_args()
|
|
window_shift = args.window_shift
|
|
keyword_table, filler_table, filler_duration = load_label_and_score(
|
|
args.keyword, args.test_data, args.score_file)
|
|
print('Filler total duration Hours: {}'.format(filler_duration / 3600.0))
|
|
with open(args.stats_file, 'w', encoding='utf8') as fout:
|
|
keyword_index = int(args.keyword)
|
|
threshold = 0.0
|
|
while threshold <= 1.0:
|
|
num_false_reject = 0
|
|
# transverse the all keyword_table
|
|
for key, score_list in keyword_table.items():
|
|
# computer positive test sample, use the max score of list.
|
|
score = max(score_list)
|
|
if float(score) < threshold:
|
|
num_false_reject += 1
|
|
num_false_alarm = 0
|
|
# transverse the all filler_table
|
|
for key, score_list in filler_table.items():
|
|
i = 0
|
|
while i < len(score_list):
|
|
if score_list[i] >= threshold:
|
|
num_false_alarm += 1
|
|
i += window_shift
|
|
else:
|
|
i += 1
|
|
if len(keyword_table) != 0:
|
|
false_reject_rate = num_false_reject / len(keyword_table)
|
|
num_false_alarm = max(num_false_alarm, 1e-6)
|
|
if filler_duration != 0:
|
|
false_alarm_per_hour = num_false_alarm / \
|
|
(filler_duration / 3600.0)
|
|
fout.write('{:.6f} {:.6f} {:.6f}\n'.format(threshold,
|
|
false_alarm_per_hour,
|
|
false_reject_rate))
|
|
threshold += args.step
|