[example] add testing code for speech command dataset (#32)
* update run.sh * update run.sh * rename test.py to compute_accuracy.py * update run,sh
This commit is contained in:
parent
b55ae111ae
commit
afbc1d2960
@ -7,13 +7,13 @@
|
||||
export CUDA_VISIBLE_DEVICES="0"
|
||||
|
||||
stage=-1
|
||||
stop_stage=2
|
||||
stop_stage=4
|
||||
num_keywords=11
|
||||
|
||||
config=conf/mdtc.yaml
|
||||
norm_mean=false
|
||||
norm_var=false
|
||||
gpu_id=4
|
||||
gpu_id=0
|
||||
|
||||
checkpoint=
|
||||
dir=exp/mdtc
|
||||
@ -79,3 +79,30 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
$cmvn_opts \
|
||||
${checkpoint:+--checkpoint $checkpoint}
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
# Do model average
|
||||
python kws/bin/average_model.py \
|
||||
--dst_model $score_checkpoint \
|
||||
--src_path $dir \
|
||||
--num ${num_average} \
|
||||
--val_best
|
||||
|
||||
# Testing
|
||||
result_dir=$dir/test_$(basename $score_checkpoint)
|
||||
mkdir -p $result_dir
|
||||
python kws/bin/compute_accuracy.py --gpu 3 \
|
||||
--config $dir/config.yaml \
|
||||
--test_data data/test/data.list \
|
||||
--batch_size 256 \
|
||||
--num_workers 8 \
|
||||
--checkpoint $score_checkpoint
|
||||
fi
|
||||
|
||||
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
python kws/bin/export_jit.py --config $dir/config.yaml \
|
||||
--checkpoint $score_checkpoint \
|
||||
--output_file $dir/final.zip \
|
||||
--output_quant_file $dir/final.quant.zip
|
||||
fi
|
||||
|
||||
102
kws/bin/compute_accuracy.py
Normal file
102
kws/bin/compute_accuracy.py
Normal file
@ -0,0 +1,102 @@
|
||||
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from kws.dataset.dataset import Dataset
|
||||
from kws.model.kws_model import init_model
|
||||
from kws.utils.checkpoint import load_checkpoint
|
||||
from kws.utils.executor import Executor
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='recognize with your model')
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--test_data', required=True, help='test data file')
|
||||
parser.add_argument('--gpu',
|
||||
type=int,
|
||||
default=-1,
|
||||
help='gpu id for this rank, -1 for cpu')
|
||||
parser.add_argument('--checkpoint', required=True, help='checkpoint model')
|
||||
parser.add_argument('--batch_size',
|
||||
default=16,
|
||||
type=int,
|
||||
help='batch size for inference')
|
||||
parser.add_argument('--num_workers',
|
||||
default=0,
|
||||
type=int,
|
||||
help='num of subprocess workers for reading')
|
||||
parser.add_argument('--pin_memory',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use pinned memory buffers used for reading')
|
||||
parser.add_argument('--prefetch',
|
||||
default=100,
|
||||
type=int,
|
||||
help='prefetch number')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
||||
|
||||
with open(args.config, 'r') as fin:
|
||||
configs = yaml.load(fin, Loader=yaml.FullLoader)
|
||||
|
||||
test_conf = copy.deepcopy(configs['dataset_conf'])
|
||||
test_conf['filter_conf']['max_length'] = 102400
|
||||
test_conf['filter_conf']['min_length'] = 0
|
||||
test_conf['speed_perturb'] = False
|
||||
test_conf['spec_aug'] = False
|
||||
test_conf['shuffle'] = False
|
||||
test_conf['feature_extraction_conf']['dither'] = 0.0
|
||||
test_conf['batch_conf']['batch_size'] = args.batch_size
|
||||
|
||||
test_dataset = Dataset(args.test_data, test_conf)
|
||||
test_data_loader = DataLoader(test_dataset,
|
||||
batch_size=None,
|
||||
pin_memory=args.pin_memory,
|
||||
num_workers=args.num_workers)
|
||||
|
||||
# Init asr model from configs
|
||||
model = init_model(configs['model'])
|
||||
|
||||
load_checkpoint(model, args.checkpoint)
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
model = model.to(device)
|
||||
executor = Executor()
|
||||
model.eval()
|
||||
training_config = configs['training_config']
|
||||
with torch.no_grad():
|
||||
test_loss, test_acc = executor.test(model, test_data_loader, device,
|
||||
training_config)
|
||||
logging.info('Test Loss {} Acc {}'.format(test_loss, test_acc))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user