128 lines
3.5 KiB
Markdown
128 lines
3.5 KiB
Markdown
# Yolo-v5 demo
|
||
|
||
## 导出rknn模型步骤
|
||
|
||
请参考 https://github.com/airockchip/rknn_model_zoo/tree/main/models/CV/object_detection/yolo
|
||
|
||
|
||
## 注意事项
|
||
|
||
1. 使用rknn-toolkit2版本大于等于1.4.0。
|
||
2. 切换成自己训练的模型时,请注意对齐anchor等后处理参数,否则会导致后处理解析出错。
|
||
3. 官网和rk预训练模型都是检测80类的目标,如果自己训练的模型,需要更改include/postprocess.h中的OBJ_CLASS_NUM以及NMS_THRESH,BOX_THRESH后处理参数。
|
||
4. demo需要librga.so的支持,编译使用请参考 https://github.com/airockchip/librga
|
||
5. 由于硬件限制,该demo的模型默认把 yolov5 模型的后处理部分,移至cpu实现。本demo附带的模型均使用relu为激活函数,相比silu激活函数精度略微下降,性能大幅上升。
|
||
|
||
|
||
|
||
## Android Demo
|
||
|
||
### 编译
|
||
|
||
根据指定平台修改 `build-android_<TARGET_PLATFORM>.sh`中的Android NDK的路径 `ANDROID_NDK_PATH`,<TARGET_PLATFORM>可以是RK3566_RK3568, RK3562或RK3588 例如修改成:
|
||
|
||
```sh
|
||
ANDROID_NDK_PATH=~/opt/tool_chain/android-ndk-r17
|
||
```
|
||
|
||
然后执行:
|
||
|
||
```sh
|
||
./build-android_<TARGET_PLATFORM>.sh
|
||
```
|
||
|
||
### 推送执行文件到板子
|
||
|
||
连接板子的usb口到PC,将整个demo目录到 `/data`:
|
||
|
||
```sh
|
||
adb root
|
||
adb remount
|
||
adb push install/rknn_yolov5_demo /data/
|
||
```
|
||
|
||
### 运行
|
||
|
||
```sh
|
||
adb shell
|
||
cd /data/rknn_yolov5_demo/
|
||
|
||
export LD_LIBRARY_PATH=./lib
|
||
./rknn_yolov5_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn model/bus.jpg
|
||
```
|
||
|
||
## Aarch64 Linux Demo
|
||
|
||
### 编译
|
||
|
||
根据指定平台修改 `build-linux_<TARGET_PLATFORM>.sh`中的交叉编译器所在目录的路径 `TOOL_CHAIN`,例如修改成
|
||
|
||
```sh
|
||
export TOOL_CHAIN=~/opt/tool_chain/gcc-9.3.0-x86_64_aarch64-linux-gnu/host
|
||
```
|
||
|
||
然后执行:
|
||
|
||
```sh
|
||
./build-linux_<TARGET_PLATFORM>.sh
|
||
```
|
||
|
||
### 推送执行文件到板子
|
||
|
||
|
||
将 install/rknn_yolov5_demo_Linux 拷贝到板子的/userdata/目录.
|
||
|
||
- 如果使用rockchip的EVB板子,可以使用adb将文件推到板子上:
|
||
|
||
```
|
||
adb push install/rknn_yolov5_demo_Linux /userdata/
|
||
```
|
||
|
||
- 如果使用其他板子,可以使用scp等方式将install/rknn_yolov5_demo_Linux拷贝到板子的/userdata/目录
|
||
|
||
### 运行
|
||
|
||
```sh
|
||
adb shell
|
||
cd /userdata/rknn_yolov5_demo_Linux/
|
||
|
||
export LD_LIBRARY_PATH=./lib
|
||
./rknn_yolov5_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn model/bus.jpg
|
||
```
|
||
|
||
Note: Try searching the location of librga.so and add it to LD_LIBRARY_PATH if the librga.so is not found on the lib folder.
|
||
Using the following commands to add to LD_LIBRARY_PATH.
|
||
|
||
```sh
|
||
export LD_LIBRARY_PATH=./lib:<LOCATION_LIBRGA.SO>
|
||
```
|
||
|
||
## 视频流Demo运行命令参考如下:
|
||
- h264视频
|
||
```
|
||
./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn xxx.h264 264
|
||
```
|
||
注意需要使用h264码流视频,可以使用如下命令转换得到:
|
||
```
|
||
ffmpeg -i xxx.mp4 -vcodec h264 xxx.h264
|
||
```
|
||
|
||
- h265视频
|
||
```
|
||
./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn xxx.hevc 265
|
||
```
|
||
注意需要使用h265码流视频,可以使用如下命令转换得到:
|
||
```
|
||
ffmpeg -i xxx.mp4 -vcodec hevc xxx.hevc
|
||
```
|
||
- rtsp视频流
|
||
```
|
||
./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn <RTSP_URL> 265
|
||
```
|
||
|
||
### 注意
|
||
|
||
- 需要根据系统的rga驱动选择正确的librga库,具体依赖请参考: https://github.com/airockchip/librga
|
||
- **rk3562 目前仅支持h264视频流**
|
||
- **rtsp 视频流Demo仅在Linux系统上支持,Android上目前还不支持**
|
||
- 视频流输入的h264名称不能为"out.h264",会被覆盖 |