Randall Zhuo b7c3b5c3c6 Update rknn-toolkit2/rknn-toolkit-lite2 to 1.5.2
Signed-off-by: Randall Zhuo <randall.zhuo@rock-chips.com>
2023-08-28 14:26:26 +08:00

39 lines
1.9 KiB
Markdown

# How to use accuracy-analysis function
## Model Source
The model used in this example come from:
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
## Script Usage
*Usage:*
```
python test.py
```
*Description:*
- The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform.
- If connecting board is required, please add the 'target' parameter in 'rknn.accuracy_analysis'.
## Expected Results
This example will outputs the results of the accuracy analysis and store all the results in the snapshot directory, as follows:
```
# simulator_error: calculate the simulator errors.
# entire: errors between 'golden' and 'simulator'.
# single: single layer errors. (compare to 'entire', the input of each layer is come from 'golden')!
# ('nan' means that tensor are 'all zeros', or 'all equal', or 'large values', etc)
layer_name simulator_error
entire single
-----------------------------------------------------------------------------------
[Input] data 1.000000 1.000000
[exDataConvert] data_int8 0.999973 0.999973
[BatchNormalization] resnetv24_batchnorm0_fwd 0.999946 0.999946
...
[Relu] resnetv24_relu1_fwd 0.983521 0.999891
[Conv] resnetv24_pool1_fwd 0.995452 0.999986
[Conv] resnetv24_dense0_fwd_conv 0.994497 0.999933
[Reshape] resnetv24_dense0_fwd_int8 0.994497 0.999945
[exDataConvert] resnetv24_dense0_fwd 0.994497 0.999945
```
- Note: Different platforms, different versions of tools and drivers may have slightly different results.