[kws] add static quantize (#44)
* [kws] add static quantize * refine lint error in shuffle_list.py * refine lint * fix topo
This commit is contained in:
parent
05bb5d1bdb
commit
f86a797b10
@ -113,9 +113,34 @@ fi
|
||||
|
||||
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
python kws/bin/export_jit.py --config $dir/config.yaml \
|
||||
echo "Static quantization, compute FRR/FAR..."
|
||||
# Apply static quantization
|
||||
quantize_score_checkpoint=$(basename $score_checkpoint | sed -e 's:.pt$:.quant.zip:g')
|
||||
cat data/train/data.list | python tools/shuffle_list.py --seed 777 | \
|
||||
head -n 10000 > $dir/calibration.list
|
||||
python kws/bin/static_quantize.py \
|
||||
--config $dir/config.yaml \
|
||||
--test_data $dir/calibration.list \
|
||||
--checkpoint $score_checkpoint \
|
||||
--output_file $dir/final.zip \
|
||||
--output_quant_file $dir/final.quant.zip
|
||||
--num_workers 8 \
|
||||
--script_model $dir/$quantize_score_checkpoint
|
||||
|
||||
result_dir=$dir/test_$(basename $quantize_score_checkpoint)
|
||||
mkdir -p $result_dir
|
||||
python kws/bin/score.py \
|
||||
--config $dir/config.yaml \
|
||||
--test_data data/test/data.list \
|
||||
--batch_size 256 \
|
||||
--jit_model \
|
||||
--checkpoint $dir/$quantize_score_checkpoint \
|
||||
--score_file $result_dir/score.txt \
|
||||
--num_workers 8
|
||||
for keyword in 0 1; do
|
||||
python kws/bin/compute_det.py \
|
||||
--keyword $keyword \
|
||||
--test_data data/test/data.list \
|
||||
--score_file $result_dir/score.txt \
|
||||
--stats_file $result_dir/stats.${keyword}.txt
|
||||
done
|
||||
fi
|
||||
|
||||
|
||||
@ -58,6 +58,10 @@ def get_args():
|
||||
parser.add_argument('--score_file',
|
||||
required=True,
|
||||
help='output score file')
|
||||
parser.add_argument('--jit_model',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use pinned memory buffers used for reading')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
@ -87,9 +91,13 @@ def main():
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch)
|
||||
|
||||
if args.jit_model:
|
||||
model = torch.jit.load(args.checkpoint)
|
||||
# For script model, only cpu is supported.
|
||||
device = torch.device('cpu')
|
||||
else:
|
||||
# Init asr model from configs
|
||||
model = init_model(configs['model'])
|
||||
|
||||
load_checkpoint(model, args.checkpoint)
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
|
||||
134
kws/bin/static_quantize.py
Normal file
134
kws/bin/static_quantize.py
Normal file
@ -0,0 +1,134 @@
|
||||
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from kws.dataset.dataset import Dataset
|
||||
from kws.model.kws_model import init_model
|
||||
from kws.utils.checkpoint import load_checkpoint
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='recognize with your model')
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--test_data', required=True, help='test data file')
|
||||
parser.add_argument('--checkpoint', required=True, help='checkpoint model')
|
||||
parser.add_argument('--num_workers',
|
||||
default=0,
|
||||
type=int,
|
||||
help='num of subprocess workers for reading')
|
||||
parser.add_argument('--pin_memory',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use pinned memory buffers used for reading')
|
||||
parser.add_argument('--prefetch',
|
||||
default=100,
|
||||
type=int,
|
||||
help='prefetch number')
|
||||
parser.add_argument('--script_model',
|
||||
required=True,
|
||||
help='output script model')
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str("-1")
|
||||
|
||||
with open(args.config, 'r') as fin:
|
||||
configs = yaml.load(fin, Loader=yaml.FullLoader)
|
||||
|
||||
test_conf = copy.deepcopy(configs['dataset_conf'])
|
||||
test_conf['filter_conf']['max_length'] = 102400
|
||||
test_conf['filter_conf']['min_length'] = 0
|
||||
test_conf['speed_perturb'] = False
|
||||
test_conf['spec_aug'] = False
|
||||
test_conf['shuffle'] = False
|
||||
test_conf['feature_extraction_conf']['dither'] = 0.0
|
||||
test_conf['batch_conf']['batch_size'] = 1
|
||||
|
||||
test_dataset = Dataset(args.test_data, test_conf)
|
||||
test_data_loader = DataLoader(test_dataset,
|
||||
batch_size=None,
|
||||
pin_memory=args.pin_memory,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch)
|
||||
|
||||
# Init asr model from configs
|
||||
model_fp32 = init_model(configs['model'])
|
||||
load_checkpoint(model_fp32, args.checkpoint)
|
||||
# model must be set to eval mode for static quantization logic to work
|
||||
model_fp32.eval()
|
||||
|
||||
# Fuse the activations to preceding layers, where applicable.
|
||||
# This needs to be done manually depending on the model architecture.
|
||||
# Common fusions include `conv + relu` and `conv + batchnorm + relu`
|
||||
print('================ Float 32 ======================')
|
||||
print(model_fp32)
|
||||
print('================ Float 32(fused) ===============')
|
||||
model_fp32.fuse_modules()
|
||||
print(model_fp32)
|
||||
|
||||
# attach a global qconfig, which contains information about what kind
|
||||
# of observers to attach. Use 'fbgemm' for server inference and
|
||||
# 'qnnpack' for mobile inference. Other quantization configurations such
|
||||
# as selecting symmetric or assymetric quantization and MinMax or L2Norm
|
||||
# calibration techniques can be specified here.
|
||||
model_fp32.qconfig = torch.quantization.get_default_qconfig('qnnpack')
|
||||
|
||||
# Prepare the model for static quantization. This inserts observers in
|
||||
# the model that will observe activation tensors during calibration.
|
||||
model_fp32_prepared = torch.quantization.prepare(model_fp32)
|
||||
|
||||
# calibrate the prepared model to determine quantization parameters for
|
||||
# activations in a real world setting, the calibration would be done with
|
||||
# a representative dataset
|
||||
with torch.no_grad():
|
||||
for batch_idx, batch in enumerate(test_data_loader):
|
||||
keys, feats, target, lengths = batch
|
||||
logits = model_fp32_prepared(feats)
|
||||
if batch_idx % 100 == 0:
|
||||
print('Progress utts {}'.format(batch_idx))
|
||||
sys.stdout.flush()
|
||||
|
||||
# Convert the observed model to a quantized model. This does several things:
|
||||
# quantizes the weights, computes and stores the scale and bias value to be
|
||||
# used with each activation tensor, and replaces key operators with
|
||||
# quantized implementations.
|
||||
print('=================== int8 ======================')
|
||||
model_int8 = torch.quantization.convert(model_fp32_prepared)
|
||||
print(model_int8)
|
||||
|
||||
print('================ int8(script) ==================')
|
||||
script_model = torch.jit.script(model_int8)
|
||||
script_model.save(args.script_model)
|
||||
print(script_model)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
48
tools/shuffle_list.py
Normal file
48
tools/shuffle_list.py
Normal file
@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import random
|
||||
import sys
|
||||
|
||||
parser = argparse.ArgumentParser(description='shuffle input file by line')
|
||||
parser.add_argument('--seed', default=None, type=int, help='random seed')
|
||||
parser.add_argument('--input', help='input file')
|
||||
parser.add_argument('--output', help='output file')
|
||||
args = parser.parse_args()
|
||||
|
||||
random.seed(args.seed)
|
||||
|
||||
if args.input is not None:
|
||||
fin = open(args.input, 'r', encoding='utf8')
|
||||
else:
|
||||
fin = sys.stdin
|
||||
|
||||
lines = fin.readlines()
|
||||
random.shuffle(lines)
|
||||
|
||||
if args.output is not None:
|
||||
fout = open(args.output, 'w', encoding='utf8')
|
||||
else:
|
||||
fout = sys.stdout
|
||||
|
||||
try:
|
||||
fout.writelines(lines)
|
||||
except Exception:
|
||||
pass
|
||||
if args.input is not None:
|
||||
fin.close()
|
||||
if args.output is not None:
|
||||
fout.close()
|
||||
Loading…
x
Reference in New Issue
Block a user